DOI QR코드

DOI QR Code

Optimal design of a viscous inertial mass damper for a taut cable by the fixed-points method

  • Duan, Y.F. (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Dong, S.H. (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Xu, S.L. (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Yun, C.B. (College of Civil Engineering and Architecture, Zhejiang University)
  • 투고 : 2021.06.25
  • 심사 : 2021.12.15
  • 발행 : 2022.07.25

초록

The negative stiffness of an active or semi-active damper system has been proven to be very effective in reducing dynamic response. Therefore, energy dissipation devices possessing negative stiffness, such as viscous inertial mass dampers (VIMDs), have drawn much attention recently. The control performance of the VIMD for cable vibration mitigation has already been demonstrated by many researchers. In this paper, a new optimal design procedure for VIMD parameters for taut cable vibration control is presented based on the fixed-points method originally developed for tuned mass damper design. A model consisting of a taut cable and a VIMD installed near a cable end is studied. The frequency response function (FRF) of the cable under a sinusoidal load distributed proportionally to the mode shape is derived. Then, the fixed-points method is applied to the FRF curves. The performance of a VIMD with the optimal parameters is subsequently evaluated through simulations. A taut cable model with a tuned VIMD is established for several cases of external excitation. The performance of VIMDs using the proposed optimal parameters is compared with that in the literature. The results show that cable vibration can be significantly reduced using the proposed optimal VIMD with a relatively small amount of damping. Multiple VIMDs are applied effectively to reduce the cable vibration with multi-modal components.

키워드

과제정보

The research described in this paper was financially supported by the National Key R&D Program of China (2018YFE0125400, 2019YFE0112600, 2017YFC0806100) and National Natural Science Foundation of China (U1709216).

참고문헌

  1. Bahar, A., Salavati-Khoshghalb, M. and Ejabati, S.M. (2018), "Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping", Smart Struct. Syst., Int. J., 21(3), 359-371. https://doi.org/10.12989/sss.2018.21.3.359
  2. Batou, A. and Adhikari, S. (2019), "Optimal parameters of viscoelastic tuned-mass dampers", J. Sound Vib., 445, 17-28. https://doi.org/10.1016/j.jsv.2019.01.010
  3. Brock, J.E. (1946), "A note on the damped vibration absorber", Transact. Am. Soc. Mech. Engr., 13(4), A284-A284. https://doi.org/10.1115/1.4009588
  4. Cao, Y.H., Xiang, H.F. and Zhou, Y. (2000), "Simulation of stochastic wind velocity field on long-span bridges", J. Eng. Mech. ASCE, 126(1), 1-6. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:1(1)
  5. Christenson, R.E., Spencer Jr, B.F. and Johnson, E.A. (2015), "Experimental verification of smart cable damping", J. Eng. Mech., 132(3), 268-278. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:3(268)
  6. Den Hartog, J.P. (1934), Mechanical Vibrations, McGraw Hill, New York, NY, USA.
  7. Deodatis, G. (1996), "Simulation of ergodic multivariate stochastic processes", J. Eng. Mech., 122(8), 778-787. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:8(778)
  8. Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer Jr, B.F., Ko, J.M. and Fang, Y. (2019a), "Design formulas for vibration control of taut cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 521-536. https://doi.org/10.12989/sss.2019.23.6.521
  9. Duan, Y.F., Ni, Y.Q., Zhang, H.M., Spencer Jr, B.F., Ko, J.M. and Dong, S.H. (2019b), "Design formulas for vibration control of sagged cables using passive MR dampers", Smart Struct. Syst., Int. J., 23(6), 537-551. https://doi.org/10.12989/sss.2019.23.6.521
  10. Duan, Y.F., Chen, Q.Y., Zhang, H.M., Yun, C.B., and Zhu, Q. (2019c), "CNN-based damage identification method of tiedarch bridge using spatial-spectral information", Smart Struct. Syst., Int. J., 23(5), 507-520. https://doi.org/10.12989/sss.2019.23.5.507
  11. Fujino, Y. and Hoang, N. (2008), "Design formulas for damping of a stay cable with a damper", J. Struct. Eng., 134(2), 269-278. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:2(269)
  12. Gao, H., Wang, H., Li, J., Wang, Z., Liang, R., Xu, Z. and Ni, Y. (2019), "Optimum design of viscous inerter damper targeting multi-mode vibration mitigation of stay cables", Eng. Struct., 226, 111375. https://doi.org/10.1016/j.engstruct.2020.111375
  13. Garrido, H., Curadelli, O. and Ambrosini, D. (2013), "Improvement of tuned mass damper by using rotational inertia through tuned viscous mass damper", Eng. Struct., 56, 2149-2153. https://doi.org/10.1016/j.engstruct.2013.08.044
  14. Hogsberg, J. (2011), "The role of negative stiffness in semi-active control of magneto-rheological dampers", Struct. Control Health Monitor., 18(3), 289-304. https://doi.org/10.1002/stc.371
  15. Hua, Y., Wong, W. and Cheng, L. (2018), "Optimal design of a beam-based dynamic vibration absorber using fixed-points theory", J. Sound Vib., 421, 111-131. https://doi.org/10.1016/j.jsv.2018.01.058
  16. Iemura, H. and Pradono, M.H. (2010), "Simple algorithm for semi-active seismic response control of cable-stayed bridges", Earthq. Eng. Struct. Dyn., 34(4-5), 409-423. https://doi.org/10.1002/eqe.440
  17. Ikago, K., Saito, K. and Inoue, N. (2012a), "Seismic control of single-degree-of-freedom structure using tuned viscous mass damper", Earthq. Eng. Struct. Dyn., 41(3), 453-474. https://doi.org/10.1002/eqe.1138
  18. Ikago, K., Sugimura, Y., Saito, K. and Inoue, N. (2012b), "Modal response characteristics of a multiple-degree-of-freedom structure incorporated with tuned viscous mass dampers", J. Asian Architect. Build. Eng., 11(2), 375-382. https://doi.org/10.3130/jaabe.11.375
  19. Jamshidi, M., Chang, C.C. and Bakhshi, A. (2017), "Self-powered hybrid electromagnetic damper for cable vibration mitigation", Smart Struct. Syst., Int. J., 20(3), 285-301. https://doi.org/10.12989/sss.2017.20.3.285
  20. Javanbakht, M., Cheng, S. and Ghrib, F. (2018), "Refined damper design formula for a cable equipped with a positive or negative stiffness damper", Struct. Control Health Monitor., 25(10), e2236. https://doi.org/10.1002/stc.2236
  21. Jeong, S., Lee, J., Cho, S. and Sim, S. (2019), "Integrated cable vibration control system using Arduino", Smart Struct. Syst., Int. J., 23(6), 695-702. https://doi.org/10.12989/sss.2019.23.6.695
  22. Johnson, E.A., Spencer Jr, B.F. and Fujino, Y. (1999a), "Semiactive damping of stay cables: A preliminary study", Proceedings of the 1999 17th International Modal Analysis Conference (IMAC), Kissimmee, FL, USA, pp. 417-423.
  23. Johnson, E.A., Baker, G.A., Spencer Jr, B.F. and Fujino, Y. (1999b), "Semiactive damping of stay cables", J. Eng. Mech., 133(1), 1-11. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:1(1)
  24. Kovacs, I. (1982), "Zur Frage der Seilschwingungen und der seildampfung", Bautechnik, 10, 325-332.
  25. Krenk, S. (2000), "Vibrations of a taut cable with an external damper", J. Appl. Mech., 67(4), 772-776. https://doi.org/10.1115/1.1322037
  26. Krenk, S. (2005), "Frequency analysis of the tuned mass damper", J. Appl. Mech., 72(6), 936-942. https://doi.org/10.1115/1.2062867
  27. Krenk, S. and Hogsberg, J. (2009), "Optimal resonant control of flexible structures", J. Sound Vib., 323(3-5), 530-554. https://doi.org/10.1016/j.jsv.2009.01.031
  28. Krenk, S. and Nielsen, S.R.K. (2002), "Vibrations of a shallow cable with a viscous damper", Proceedings of the Royal Society A-Mathematical, Physical and Engineering Sciences, 458(2018), 339-357. https://doi.org/10.1098/rspa.2001.0879
  29. Li, H., Liu, M. and Ou, J.P. (2008), "Negative stiffness characteristics of active and semi-active control systems for stay cables", Struct. Control Health Monitor., 15(2), 120-142. https://doi.org/10.1002/stc.200
  30. Liu, K. and Liu, J. (2005), "The damped dynamic vibration absorbers: revisited and new result", J. Sound Vib., 284(3-5), 1181-1189. https://doi.org/10.1016/j.jsv.2004.08.002
  31. Lu, L., Duan, Y.F., Spencer Jr, B.F., Lu, X.L. and Zhou, Y. (2017), "Inertial mass damper for mitigating cable vibration", Struct. Control Health Monitor., 24(10), 1-12. https://doi.org/10.1002/stc.1986
  32. Lu, L., Fermandois, G.A., Lu, X.L., Spencer Jr, B.F. and Zhou, Y. (2019), "Experimental evaluation of an inertial mass damper and its analytical model for cable vibration mitigation", Smart Struct. Syst., Int. J., 23(6), 589-613. https://doi.org/10.12989/sss.2019.23.6.589
  33. Marian, L. and Giaralis, A. (2017), "The tuned mass-damperinerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting", Smart Struct. Syst., Int. J., 19(6), 665-678. https://doi.org/10.12989/sss.2017.19.6.665
  34. Ministry of Transport of the People's Republic of China (2018), Wind-resistant Design Specification for High Way Bridges, JTG/T 3360-01-2018.
  35. Nakamura, Y., Fukukita, A., Tamura, K., Yamazaki, I., Matsuoka, T., Hiramoto, K. and Sunakoda, K. (2014), "Seismic response control using electromagnetic inertial mass dampers", Earthq. Eng. Struct. Dyn., 43(4), 507-527. https://doi.org/10.1002/eqe.2355
  36. Ni, Y.Q., Duan, Y.F., Chen, Z.Q. and Ko, J.M. (2002), "Damping identification of MR-damped bridge cables from in-situ monitoring under wind-rain-excited conditions", Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE), 4696, 41-51. https://doi.org/10.1117/12.472573
  37. Ozer, M.B. and Royston, T.J. (2005), "Extending Den Hartog's vibration absorber technique to multi-degree-of-freedom systems", J. Vib. Acoust., 127(4), 341-350. https://doi.org/10.1115/1.1924642
  38. Pacheco, B.M., Fujino, Y. and Sulekh, A. (1993), "Estimation curve for modal damping in stay cables with viscous damper", J. Struct. Eng. ASCE, 119(6), 1961-1979. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:6(1961)
  39. Ren, M.Z. (2001), "A variant design of the dynamic vibration absorber", J. Sound Vib., 245(4), 762-770. https://doi.org/10.1006/jsvi.2001.3564
  40. Shen, Y., Peng, H., Li, X. and Yang, S. (2017), "Analytically optimal parameters of dynamic vibration absorber with negative stiffness", Mech. Syst. Signal Process., 85, 193-203. https://doi.org/10.1016/j.ymssp.2016.08.018
  41. Shum, K.M. (2009), "Closed form optimal solution of a tuned liquid column damper for suppressing harmonic vibration of structures", Eng. Struct., 31(1), 84-92. https://doi.org/10.1016/j.engstruct.2008.07.015
  42. Shi, X. and Zhu, S.Y. (2015), "Magnetic negative stiffness dampers", Smart Mater. Struct., 24(7), 072002. https://doi.org/10.1088/0964-1726/24/7/072002
  43. Shi, X. and Zhu, S.Y. (2018), "Dynamic characteristics of stay cables with inerter dampers", J. Sound Vib., 423, 287-305. https://doi.org/10.1016/j.jsv.2018.02.042
  44. Simiu, E. and Scanlan, R.H. (1996), Wind Effects on Structures: Fundamentals and Applications to Design, (Third Edition), John Wiley & Sons, Inc., New York, NY, USA.
  45. Spencer Jr, B.F., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech. ASCE, 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  46. Wang, M., Sun, F., Yang, J. and Nagarajaiah, S. (2019), "Seismic protection of SDOF systems with a negative stiffness amplifying damper", Eng. Struct., 190, 128-141. https://doi.org/10.1016/j.engstruct.2019.03.110
  47. Weber, F. and Distl, H. (2015), "Semi-active damping with negative stiffness for multi-mode cable vibration mitigation: approximate collocated control solution", Smart Mater. Struct., 24(11), 115015. https://doi.org/10.1088/0964-1726/24/11/115015
  48. Wong, W.O., Fan, R.P. and Cheng, F. (2018), "Design optimization of a viscoelastic dynamic vibration absorber using a modified fixed-points theory", J. Acoust. Soc. Am., 143(2), 1064-1075. https://doi.org/10.1121/1.5024506
  49. Zhu, X., Chen, Z. and Jiao, Y. (2018), "Optimizations of distributed dynamic vibration absorbers for suppressing vibrations in plates", J. Low Freq. Noise Vib. Active Control, 37(4), 1188-1200. https://doi.org/10.1177/1461348418794563