과제정보
This work was supported by a grant (21CTAP-C163708-01) from Technology Advancement Research Program funded by Korea Agency for Infrastructure Technology Advancement (KAIA). The datasets used in this paper were granted by the committee of the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020). The authors would like to thank for the opportunity provided by IPC-SHM 2020.
참고문헌
- Bao, Y., Li, J., Nagayama, T., Xu, Y., Spencer, B.F. and Li, H. (2021), "The 1st international project competition for structural health monitoring (IPC-SHM, 2020): a summary and benchmark problem", Struct. Health Monitor., 20(4), 2229-2239. https://doi.org/10.1177/14759217211006485
- Barbedo, J.G.A. (2018), "Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification", Comput. Electron. Agricult., 153, 46-53. https://doi.org/10.1016/j.compag.2018.08.013
- Bastani, A., Amindavar, H., Shamshirsaz, M. and Sepehry, N. (2011), "Identification of temperature variation and vibration disturbance in impedance-based structural health monitoring using piezoelectric sensor array method", Struct. Health Monitor., Int. J., 11(3), 305-314. https://doi.org/10.1177/1475921711427486
- Bhalla, S., Vittal, P.A. and Veljkovic, M. (2012), "Piezo-impedance transducers for residual fatigue life assessment of bolted steel joints", Struct. Health Monitor., Int. J., 11(6), 733-750. https://doi.org/10.1177/1475921712458708
- Campbell, L.E., Connor, R.J., Whitehead, J.M. and Washer, G.A. (2020), "Benchmark for evaluating performance in visual inspection of fatigue cracking in steel bridges", J. Bridge Eng., 25(1), 04019128. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001507
- Cha, Y.J., Choi, W. and Buyukozturk, O. (2017), "Deep learning-based crack damage detection using convolutional neural networks", Comput.-Aided Civil Infrastruct. Eng., 32(5), 361-378. https://doi.org/10.1111/mice.12263
- Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2014), "Semantic image segmentation with deep convolutional nets and fully connected crfs", Computer Vision and Pattern Recognition, arXiv preprint arXiv:1412.7062. https://doi.org/10.48550/arXiv.1412.7062
- Chen, L.C., Papandreou, G., Schroff, F. and Adam, H. (2017), "Rethinking atrous convolution for semantic image segmentation", arXiv preprint arXiv:1706.05587. https://doi.org/10.48550/arXiv.1706.05587
- Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K. and Yuille, A.L. (2018a), "DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs", IEEE Transact. Pattern Anal. Machine Intell., 40(4), 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
- Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F. and Adam, H. (2018b), "Encoder-decoder with atrous separable convolution for semantic image segmentation", Proceedings of the European Conference on Computer Vision (ECCV). https://doi.org/10.48550/arXiv.1802.02611
- Chollet, F. (2017), "Xception: Deep learning with depthwise separable convolutions", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.48550/arXiv.1610.02357
- Connor, R.J. (2012), "Manual for design, construction, and maintenance of orthotropic steel deck bridges", No. FHWA-IF-12-027; United States, Federal Highway Administration. https://rosap.ntl.bts.gov/view/dot/41395
- Csurka, G., Larlus, D., Perronnin, F. and Meylan, F. (2013), "What is a good evaluation measure for semantic segmentation?", In: Bmvc, Vol. 27, pp. 10-5244. http://dx.doi.org/10.5244/C.27.32
- Dellenbaugh, L., Kong, X., Al-Salih, H., Collins, W., Bennett, C., Li, J. and Sutley, E.J. (2020), "Development of a distortion-induced fatigue crack characterization methodology using digital image correlation", J. Bridge Eng., 25(9), 04020063. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001598
- Dhivya, J.J. and Ramaswami, M. (2018), "A perusal analysis on hybrid spectrum handoff schemes in cognitive radio networks", International Conference on Intelligent Systems Design and Applications, pp. 312-321. https://doi.org/10.1007/978-3-030-16660-1_31
- Di, J., Ruan, X., Zhou, X., Wang, J. and Peng, X. (2021), "Fatigue assessment of orthotropic steel bridge decks based on strain monitoring data", Eng. Struct., 228, 111437. https://doi.org/10.1016/j.engstruct.2020.111437
- Dong, C.Z. and Catbas, F.N. (2020), "A review of computer vision-based structural health monitoring at local and global levels", Struct. Health Monitor., 20(2), 692-743. https://doi.org/10.1177/1475921720935585
- Dong, C.Z., Bas, S. and Catbas, F.N. (2020), "Investigation of vibration serviceability of a footbridge using computer vision-based methods", Eng. Struct., 224, 111224. https://doi.org/10.1016/j.engstruct.2020.111224
- Dong, C., Li, L., Yan, J., Zhang, Z., Pan, H. and Catbas, F.N. (2021), "Pixel-level fatigue crack segmentation in large-scale images of steel structures using an encoder-decoder network", Sensors, 21(12), 4135. https://doi.org/10.3390/s21124135
- Dung, C.V. and Anh, L.D. (2019), "Autonomous concrete crack detection using deep fully convolutional neural network", Automat. Constr., 99, 52-58. https://doi.org/10.1016/j.autcon.2018.11.028
- Erdogan, Y.S. and Ada, M. (2020), "A computer-vision based vibration transducer scheme for structural health monitoring applications", Smart Mater. Struct., 29(8), 085007. https://doi.org/10.1088/1361-665X/ab9062
- Fasl, J., Helwig, T. and Wood, S.L. (2016), "Fatigue response of a fracture-critical bridge at the end of service life", J. Perform. Constr. Facil, 30(5), 04016019. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000871
- Ghahremani, K., Sadhu, A., Walbridge, S. and Narasimhan, S. (2013), "Fatigue testing and structural health monitoring of retrofitted web stiffeners on steel highway bridges", Transport. Res. Record: J. Transport. Res. Board, 2360(1), 27-35. https://doi.org/10.3141/2360-04
- Habtour, E., Cole, D.P., Riddick, J.C., Weiss, V., Robeson, M., Sridharan, R. and Dasgupta, A. (2016), "Detection of fatigue damage precursor using a nonlinear vibration approach", Struct. Control Health Monitor., 23(12), 1442-1463. https://doi.org/10.1002/stc.1844
- He, K., Zhang, X., Ren, S. and Sun, J. (2015), "Spatial pyramid pooling in deep convolutional networks for visual recognition", IEEE Transact. Pattern Anal. Mach. Intell., 37(9), 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/CVPR.2016.90
- Hou, Y., Yue, P., Xin, Q., Pauli, T., Sun, W. and Wang, L. (2013), "Fracture failure of asphalt binder in mixed mode (Modes I and II) by using phase-field model", Road Mater. Pave. Des., 15(1), 167-181. https://doi.org/10.1080/14680629.2013.866155
- Huynh, T.C. (2021), "Vision-based autonomous bolt-looseness detection method for splice connections: Design, lab-scale evaluation, and field application", Automat. Constr, 124, 103591. https://doi.org/10.1016/j.autcon.2021.103591
- Huynh, T.C., Park, Y.H., Park, J.H., Hong, D.S. and Kim, J.T. (2015), "Effect of temperature variation on vibration monitoring of prestressed concrete girders", Shock Vib., 1-9. https://doi.org/10.1155/2015/741618
- Huynh, T.C., Dang, N.L. and Kim, J.T. (2017), "Advances and challenges in impedance-based structural health monitoring", Struct. Monitor. Maint., Int. J., 4(4), 301-329. https://doi.org/10.12989/smm.2017.4.4.301
- Huynh, T.C., Dang, N.L. and Kim, J.T. (2018), "PCA-based filtering of temperature effect on impedance monitoring in prestressed tendon anchorage", Smart Struct. Syst., Int. J., 22(1), 57-70. https://doi.org/10.12989/sss.2018.22.1.057
- Huynh, T.C., Park, J.H., Jung, H.J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Automat. Constr., 105, 102844. https://doi.org/10.1016/j.autcon.2019.102844
- Huynh, T.C., Nguyen, T.T., Kim, J.T., Ta, Q.B., Ho, D.D. and Phan, T.T.V. (2021), "Deep learning-based functional assessment of piezoelectric-based smart interface under various degradations", Smart Struct. Syst., Int. J., 28(1), 69-87. https://doi.org/10.12989/sss.2021.28.1.069
- Jeong, S., Kim, H., Lee, J. and Sim, S.H. (2020), "Automated wireless monitoring system for cable tension forces using deep learning", Struct. Health Monitor., 20(4), 1805-1821. https://doi.org/10.1177/1475921720935837
- Jin, S.S., Jeong, S., Sim, S.H., Seo, D.W. and Park, Y.S. (2021), "Fully automated peak-picking method for an autonomous stay-cable monitoring system in cable-stayed bridges", Automat. Constr., 126, 103628. https://doi.org/10.1016/j.autcon.2021.103628
- Khuc, T. and Catbas, F.N. (2016), "Computer vision-based displacement and vibration monitoring without using physical target on structures", Struct. Infrastr. Eng., 13(4), 505-516. https://doi.org/10.1080/15732479.2016.1164729
- Kim, H., Yoon, J. and Sim, S.H. (2020), "Automated bridge component recognition from point clouds using deep learning", Struct. Control Health Monitor, 27(9). https://doi.org/10.1002/stc.2591
- Kong, X., Li, J., Collins, W., Bennett, C., Laflamme, S. and Jo, H. (2018), "Sensing distortion-induced fatigue cracks in steel bridges with capacitive skin sensor arrays", Smart Mater. Struct, 27(11), 115008. https://doi.org/10.1088/1361-665X/aadbfb
- Lee, Y.F., Lu, Y. and Guan, R. (2020), "Nonlinear guided waves for fatigue crack evaluation in steel joints with digital image correlation validation", Smart Mater. Struct., 29(3), 035031. https://doi.org/10.1088/1361-665X/ab6fe7
- Li, M., Suzuki, Y., Hashimoto, K. and Sugiura, K. (2018), "Experimental study on fatigue resistance of rib-to-deck joint in orthotropic steel bridge deck", J. Bridge Eng., 23(2), 04017128. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001175
- Ly, C.D., Vo, T.H., Mondal, S., Park, S., Choi, J., Vu, T.T.H., Kim, C.S. and Oh, J. (2021), "Full-view in vivo skin and blood vessels profile segmentation in photoacoustic imaging based on deep learning", Photoacoustics, 25, 100310. https://doi.org/10.1016/j.pacs.2021.100310
- Papadimitriou, C., Fritzen, C.P., Kraemer, P. and Ntotsios, E. (2011), "Fatigue predictions in entire body of metallic structures from a limited number of vibration sensors using Kalman filtering", Struct. Control Health Monitor., 18(5), 554-573. https://doi.org/10.1002/stc.395
- Park, J.-H., Huynh, T.-C., Choi, S.-H. and Kim, J.-T. (2015), "Vision-based technique for bolt-loosening detection in wind turbine tower", Wind Struct., Int. J., 21(6), 709-726. https://doi.org/10.12989/was.2015.21.6.709
- Pham, H.C., Ta, Q.B., Kim, J.T., Ho, D.D., Tran, X.L. and Huynh, T.C. (2020), "Bolt-loosening monitoring framework using an image-based deep learning and graphical model", Sensors, 20(12). https://doi.org/10.3390/s20123382
- Ronneberger, O., Fischer, P. and Brox, T. (2015), "U-net: convolutional networks for biomedical image segmentation", In: International Conference on Medical image computing and Computer-assisted Intervention, 9351. https://doi.org/10.1007/978-3-319-24574-4_28
- Shorten, C. and Khoshgoftaar, T.M. (2019), "A survey on image data augmentation for deep learning", J. Big Data, 6(1). https://doi.org/10.1186/s40537-019-0197-0
- Sim, H.B. and Uang, C.M. (2012), "Stress analyses and parametric study on full-scale fatigue tests of rib-to-deck welded joints in steel orthotropic decks", J. Bridge Eng., 17(5), 765-773. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000307
- Soh, C.K. and Lim, Y.Y. (2009), "Detection and characterization of fatigue induced damage using electromechanical impedance technique", Adv. Mater. Res., 79-82, 2031-2034. https://doi.org/10.4028/www.scientific.net/AMR.79-82.2031
- Spencer, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Engineering, 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Sun, L.M., Zhang, W. and Nagarajaiah, S. (2019), "Bridge real-time damage identification method using inclination and strain measurements in the presence of temperature variation", J. Bridge Eng., 24(2), 04018111. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001325
- Sun, Y., Yang, Y., Yao, G., Wei, F. and Wong, M. (2021), "Autonomous crack and bughole detection for concrete surface image based on deep learning", IEEE Access, 9, 85709-85720. https://doi.org/10.1109/ACCESS.2021.3088292
- Ta, Q.B. and Kim, J.T. (2020), "Monitoring of corroded and loosened bolts in steel structures via deep learning and hough transforms", Sensors, 20(23). https://doi.org/10.3390/s20236888
- Xu, Y., Bao, Y., Chen, J., Zuo, W. and Li, H. (2018a), "Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumerg-rade camera images", Struct. Health Monitor, 18(3), 653-674. https://doi.org/10.1177/1475921718764873
- Xu, Y., Li, S., Zhang, D., Jin, Y., Zhang, F., Li, N. and Li, H. (2018b), "Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images", Struct. Control Health Monitor., 25(2), 2075. https://doi.org/10.1002/stc.2075
- Ya, S., Yamada, K. and Ishikawa, T. (2011), "Fatigue evaluation of rib-to-deck welded joints of orthotropic steel bridge deck", J. Bridge Eng., 16(4), 492-499. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000181
- Yang, X., Li, H., Yu, Y., Luo, X., Huang, T. and Yang, X. (2018), "Automatic pixel-level crack detection and measurement using fully convolutional network", Comput.-Aided Civil Infrastr. Eng., 33(12), 1090-1109. https://doi.org/10.1111/mice.12412
- Yao, L., Dong, Q., Jiang, J. and Ni, F. (2020), "Deep reinforcement learning for long-term pavement maintenance planning", Comput.-Aided Civil Infrastr. Eng., 35(11), 1230-1245. https://doi.org/10.1111/mice.12558
- Ye, X., Jin, T. and Yun, C. (2019), "A review on deep learning-based structural health monitoring of civil infrastructures", Smart Struct. Syst.., Int. J., 24(5), 567-586. https://doi.org/10.12989/sss.2019.24.5.567
- Zhao, X., Zhang, Y. and Wang, N. (2019), "Bolt loosening angle detection technology using deep learning", Struct. Control Health Monitor., 26(1), 2292. https://doi.org/10.1002/stc.2292