DOI QR코드

DOI QR Code

The Beneficial Effect of Platycodon grandiflorum on DSS-induced Colitis through Regulation of HIF-1α in Mice

  • Yang, Mi-Ok (Wonkwang Institute of Nature Healthcare Studies) ;
  • Myung, Noh-Yil (Department of Oriental Medicine and Healthcare, Wonkwang Digital University)
  • Received : 2022.05.11
  • Accepted : 2022.05.11
  • Published : 2022.06.01

Abstract

Ulcerative colitis (UC) is a typical inflammatory colon disorder. Platycodon grandiflorum (PG) is known to exert various beneficial effects including anti-oxidative and anti-bacterial properties and improvements in liver function. However, the improving effect and mechanism of PG on intestinal inflammation are not fully understood. The present research was designed to investigate the effect of PG on the clinical signs of DSS-induced colitis in mice. The ameliorative effects of PG on inflammatory cytokine expression and the activation of hypoxia-inducible-factor (HIF)-1α in DSS-treated colon tissue were also determined. Our results showed that mice treated with DSS displayed the main clinical symptoms of colitis, including weight loss, bloody stools, decrease in colon length and diarrhea and PG treatment significantly improved the clinical features induced by DSS in mice. PG inhibited the increase in the levels of inflammatory cytokines caused by DSS in colon tissues. We also showed that the anti-inflammatory mechanism of PG involved suppressing the activation of HIF-1α in DSS-treated colon tissues. Collectively, the findings of this study indicate the prospect of developing new drugs from PG for UC treatment.

Keywords

Acknowledgement

This study was supported by Wonkwang Digital University in 2022.

References

  1. Ardizzone, S. and P.G. Bianchi. 2005. Biologic therapy for inflammatory bowel disease. Drugs 65:2253-2286. https://doi.org/10.2165/00003495-200565160-00002
  2. Baumgart, D.C. and S.R. Carding. 2007. Inflammatory bowel disease: Cause and immunobiology. Lancet 369:1627-1640. https://doi.org/10.1016/S0140-6736(07)60750-8
  3. Choi, J.N. and W.H. Lee. 2018. An investigation of characteristics of Chinese bellflower (Platycodon grandiflorum A.) cultivated soil. Korean J. Plant Res. 31(6):660-666. https://doi.org/10.7732/KJPR.2018.31.6.660
  4. Cottone, M., S. Renna, I. Modesto and A. Orlando. 2011. Is 5-ASA still the treatment of choice for ulcerative colitis? Curr. Drug Targets 12:1396-1405. https://doi.org/10.2174/138945011796818126
  5. Danese, S., M. Sans and C. Fiocchi. 2004. Inflammatory bowel disease; the role of environmental factors. Autoimmun. Rev. 3:394-400. https://doi.org/10.1016/j.autrev.2004.03.002
  6. Domenech, E. 2006. Inflammatory bowel disease: Current therapeutic options. Digestion 73:67-76. https://doi.org/10.1159/000089781
  7. Eichele, D.D. and K.K. Kharbanda. 2017. Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 23:6016-6029. https://doi.org/10.3748/wjg.v23.i33.6016
  8. Furuta, G.T., J.R. Turner, C.T. Taylor, R.M. Hershberg, K. Comerford, S. Narravula, D.K. Podolsky and S.P. Colgan. 2001. Hypoxia-inducible factor 1-dependent induction of intestinal trefoil factor protects barrier function during hypoxia. J. Exp. Med. 193(9):1027-1034. https://doi.org/10.1084/jem.193.9.1027
  9. Glover, L.E. and S.P. Colgan. 2011. Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology 140:1748-1755. https://doi.org/10.1053/j.gastro.2011.01.056
  10. Hendrickson, B.A., R. Gokhale and J.H. Cho. 2002. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin. Microbiol. Rev. 15:79-94. https://doi.org/10.1128/CMR.15.1.79-94.2002
  11. Karhausen, J., G.T. Furuta, J. E. Tomaszewski, R. S. Johnson, S.P. Colgan and V.H. Haase. 2004. Epithelial hypoxia-inducible factor-1 is protective in murine experimental colitis. J. Clin. Investig. 8:1098-1106.
  12. Kim, Y.P., E.B. Lee, S.Y. Kim, D. Li, H.S. Ban, S.S. Lim, K.H. Shin and K. Ohuchi. 2001. Inhibition of prostaglandin E2 production by platycodin D isolated from the root of Platycodon grandiflorum. Planta Med. 67:362-364. https://doi.org/10.1055/s-2001-14317
  13. Kim, Y.S. J.S. Kim, S.U. Choi, J.S. Kim, H.S. Lee, S.H. Roh, Y.C. Jeong, Y.K. Kim and S.Y. Ryu. 2005. Isolation of a new saponin and cytotoxic effect of saponins from the root of Platycodon grandiflorum on human tumor cell lines. Planta Med. 71:566-568. https://doi.org/10.1055/s-2005-864161
  14. Li, Y., C. de Haar, M Chen, J. Deuring, M.M. Gerrits, R. Smits, B. Xia, E.J. Kuipers and J. van der Woude. 2010. Disease-related expression of the IL-6/STAT3/SOCS3 signaling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut. 59:227-235. https://doi.org/10.1136/gut.2009.184176
  15. Mueller, C. 2002. Tumour necrosis factor in mouse models of chronic intestinal inflammation. Immunology 105:1-8. https://doi.org/10.1046/j.1365-2567.2002.01329.x
  16. Nunes, N.S., S. Kim, M. Sundby, P. Chandran, S.R. Burks, A.H. Paz and J.A. Frank. 2018. Temporal clinical, proteomic, histological and cellular immune responses of dextran sulfate sodium-induced acute colitis. World J. Gastroenterol. 24(38):4341-4355. https://doi.org/10.3748/wjg.v24.i38.4341
  17. Ogata, H. and T. Hibi. 2003. Cytokine and anti-cytokine therapies for inflammatory bowel disease. Curr. Pharm. Des. 9:1107-1113. https://doi.org/10.2174/1381612033455035
  18. Papadakis, K.A. and S.R. Targan. 2000. Role of cytokines in the pathogenesis of inflammatory bowel disease. Annu. Rev. Med. 51:289-298. https://doi.org/10.1146/annurev.med.51.1.289
  19. Park, J.H., L. Peyrin-Biroulet, M. Eisenhut and J.I. Shin. 2017. IBD immunopathogenesis: A comprehensive review of inflammatory molecules. Autoimmun. Rev. 16(4):416-426. https://doi.org/10.1016/j.autrev.2017.02.013
  20. Park, Y.S., Y.S. Yoon and H.S. Ahn. 2007. Platycodon grandiflorum extract represses up-regulated adipocyte fatty acid binding protein triggered by a high fat feeding in obese rats. World J. Gastroenterol. 7:3493-3499. https://doi.org/10.3748/wjg.v13.i25.3493
  21. Sandborn, W.J. and S.R. Targan. 2002. Biologic therapy of inflammatory bowel disease. Gastroenterology 122:1592-1608. https://doi.org/10.1053/gast.2002.33426
  22. Sands, B.E. and G.G. Kaplan. 2007. The role of TNFalpha in ulcerative colitis. J. Clin. Pharmacol. 47(8):930-941. https://doi.org/10.1177/0091270007301623
  23. Scaldaferri, F., S. Vetrano, M. Sans, V. Arena, G. Straface, E. Stigliano, A. Repici, A. Sturm, A. Malesci, J. Panes, S. Yla-Herttuala, C. Fiocchi and S. Danese. 2009. VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136:585-595. https://doi.org/10.1053/j.gastro.2008.09.064
  24. Taylor, C.T. and S.P. Colgan. 2007. Hypoxia and gastrointestinal disease. J. Mol. Med. 85:1295-1300. https://doi.org/10.1007/s00109-007-0277-z
  25. Van Uden, P., N.S. Kenneth and S. Rocha. 2008. Regulation of hypoxia-inducible factor-1α by NF-κB. Biochem. J. 412: 477-484. https://doi.org/10.1042/BJ20080476
  26. Wirtz, S., V. Popp, M. Kindermann, K. Gerlach, B. Weigmann, S. Fichtner-Feigl and M.F. Neurath. 2017. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12(7):1295-1309. https://doi.org/10.1038/nprot.2017.044
  27. Yashiro, M. 2014. Ulcerative colitis-associated colorectal cancer. World J. Gastroenterol. 28:16389-16397. https://doi.org/10.3748/wjg.v20.i44.16389