DOI QR코드

DOI QR Code

Observation of nano powders and fly ash usage effects on the fluidity features of grouts

  • Celik, Fatih (Department of Civil Engineering, Nigde Omer Halisdemir University) ;
  • Yildiz, Oguzhan (Department of Electricity and Energy, Nigde Technical Vocational School, Nigde Omer Halisdemir University) ;
  • Bozkir, Samet M. (Department of Civil Engineering, Nigde Omer Halisdemir University)
  • Received : 2021.06.16
  • Accepted : 2022.04.15
  • Published : 2022.07.25

Abstract

The pumpability of the grouts is significant issue in concept of the rheological and workability properties during penetrating to voids and cracks. To improve the fluidity features of the grout mixes, the usage of Colloidal Nano Particular Powders (CNPPs) with mineral additives such as fly ash (FA) can contribute. Therefore, the main purpose of this study can be explained as investigating the usage effects of four types of Colloidal Nano Particular Powders (n-TiO2, n-ZnO, n-Al2O3 and n-SiO2) as nano additives on the rheological, workability and bleeding properties of cement-based grout incorporated with fly as. Test results showed that the usage of FA in the grout samples positively contribute to increase on the fluidity of the grout samples as expected. The dilatant behavior was observed from the results for all mixes. Observing the effect of nano-sized additives in such cement-based grout mixtures with high fluidity has presented remarkable effects in this study.

Keywords

Acknowledgement

This study was funded by The Scientific and Technological Research Council of Turkey TUBITAK [grant number: 219M522]. The authors would like to thank TUBITAK for its great support.

References

  1. Ashoh, M., Parande A.K. and Jayabalan P. (2017), "Strength and durability study on cement mortar containing nano material", Adv. Nano Res., 5(2), 99-111. https://doi.org/10.12989/anr.2017.5.2.099.
  2. Balapour, M., Joshaghani, A. and Althoey, F. (2018), "Nano-SiO2 contribution to mechanical, durability, fresh and microstructural characteristics of concrete: A review", Constr. Build. Mater., 181, 27-41. https://doi.org/10.1016/j.conbuildmat.2018.05.266.
  3. Bjornstrom, J., Martinelli, A., Matic, A., Borjesson L. and Panas, I. (2004), "Accelerating effects of colloidal nano-silica for beneficial calcium-silicate-hydrate formation in cement", Chem. Phys. Lett., 392, 242-324. https://doi.org/10.1016/j.cplett.2004.05.071.
  4. Barnes, H.A. (1995), "A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscometers; its cause, character, and cure", J. Non-Newton Fluid Mech., 56(3), 221-251. https://doi.org/10.1016/0377-0257(94)01282-M.
  5. Celik, F. and Canakci, H. (2015), "An investigation of rheological properties of cement-based grout mixed with rice husk ash (RHA)", Constr. Build. Mater., 91, 187-194. https://doi.org/10.1016/j.conbuildmat.2015.05.025.
  6. Celik, F. and Canakci, H. (2018), "Examination of the mechanical properties and failure pattern of soilcrete mixtures modified with rice husk ash", Eur. J. Environ. Civ. Eng., 24, 1245-60. https://doi.org/10.1080/19648189.2018.1458656.
  7. Celik, F. and Akcuru, O. (2020), "Rheological and workability effects of bottom ash usage as a mineral additive on the cementbased permeation grouting method", Constr. Build. Mater., 263, 120186. https://doi.org/10.1016/j.conbuildmat.2020.120186.
  8. Collepardi, S., Borsoi, A., Olagot, J.J.O., Troli, R., Collepardi, M. and Cursio, A.Q. (2005), "Influence of nano-sized mineral additions on performance of SCC", Proceedings of the 6th International Congress, Global Construction, Ultimate Concrete Opportunities, Dundee, U.K., July. https://doi.org/10.1680/aonicd.34082.0006.
  9. Cry, M., Legrand, C. and Mouret, M. (2000), "Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives", Cement Concr. Res., 30, 1477-1483. https://doi.org/10.1016/S0008-8846(00)00330-6.
  10. Deere, D.U. (1982), "Cement-bentonite grouting for dams", Proceedings of ASCE Specialty Conference on Grouting in Geotechnical Engineering, New Orleans, U.S.A., 279-300. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0035839
  11. Golaszewki, J. and Szwabowski, J. (2004), "Influence of superplasticizer on rheological behaviour of fresh cement mortars", Cem. Concr. Res., 34(2), 235-248. https://doi.org/10.1016/j.cemconres.2003.07.002.
  12. Hoffman, R.L. (1998), "Explanation for cause of shear thickening in concentrated colloidal suspensions", J. Rheol., 42(1), 111-123. https://doi.org/10.1122/1.550884.
  13. Hou, P.K., Kawashima, S., Kong, D.Y., Corr, D.J., Qian, J.S. and Shah, S.P. (2013), "Modification effects of colloidal nano SiO2 on cement hydration and its gel property", Compos. Part B Eng., 45, 440-448. https://doi.org/10.1016/j.compositesb.2012.05.056.
  14. Jolicoeur, C., Sharman, J., Otis, N., Lebel, A., Simard, M.A. and Page M. (1997), "The influence of temperature on the rheological properties of superplasticized cement pastes", Proceedings of the 5th CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, Rome, Italy, 379-415.
  15. Kantro, D.L. (1980), "Influence of water reducing admixtures on properties of cement paste a miniature slump test", Cem Concr Aggr., 2(2), 95-102. https://doi.org/10.1520/CCA10190J.
  16. Kauschinger, L.J., Perry, E.R. and Hankour, R. (1992), "Methods to estimate composition of jet grout bodies, Geo-congress New Orleans", Am. Soc. Civil Eng., 30, 194-205.
  17. Khayat, K.H. and Yahia, A. (1997), "Effect of Welan Gum-highrange water reducer combinations on rheology of cement grout", ACI Mater J., 94(5), 365- 372.
  18. Kirgiz, M.S. (2015), "Advance treatment by nanographite for Portland pulverised fly ash cement (the class F) systems", Compos. Part B Eng., 82, 59-71. https://doi.org/10.1016/j.compositesb.2015.08.003.
  19. Konsta-Gdoutos, M.S., Metaxa, Z.S. and Shah, S.P. (2010), "Highly dispersed carbon nanotube reinforced cement-based materials", Cem. Concr. Res., 40(7), 1052-1059. https://doi.org/10.1016/j.cemconres.2010.02.015.
  20. Kutzner, C. (1974), "Grouting of Rock and Soil. Rotterdam: The evolution of brittle fracture in rocks", J. Geol. Soc., 130, 1-16. http://worldcat.org/isbn/9054106344. https://doi.org/10.1144/gsjgs.130.1.0001
  21. Liu, X.Y., Chen, L., Liu, A.H. and Wang, X.R. (2012), "Effect of nano-CaCO3 on properties of cement paste", Energy Proc., 16, 991-996. https://doi.org/10.1016/j.egypro.2012.01.158.
  22. Madani, H., Bagheri, A. and Parhizkar, T. (2012), "The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement", Cem. Concr. Res., 42, 1563-1570. https://doi.org/10.1016/j.cemconres.2012.09.004.
  23. Meng, W. and Khayat, K.H. (2018), "Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC", Cem. Concr. Res., 105, 64-71. https://doi.org/10.1016/j.cemconres.2018.01.001.
  24. Metaxa, Z.S., Konsta-Gdoutos, M. and Shah, S.P. (2010), "Carbon nanofiber-reinforced cement-based materials", Transp. Res. Rec., 2142, 114-118. https://doi.org/10.3141/2142-17.
  25. Moseley, M.P. (1993), Ground improvement, Florida: Blackie Academic and Professional, CRC Press.
  26. Nazari, A. and Riahi, S. (2011), "The effects of SiO2 nanoparticles on physical and mechanical properties of high strength compacting concrete", Compos. Part B Eng., 42, 570-578. https://doi.org/10.1016/j.compositesb.2010.09.025.
  27. Oltulu, M. and Sahin, R. (2013), "Effect of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strengths and capillary water absorption of cement mortar containing fly ash: A comparative study", Energy Build., 58, 292-301. https://doi.org/10.1016/j.enbuild.2012.12.014.
  28. Ouyang, J., Han, B.G., Chen, G.Z., Zhao, L.Z. and Ou, J.P. (2018), "A viscosity prediction model for cement paste with nano-SiO2 particles", Constr. Build. Mater., 185, 293-301. https://doi.org/10.1016/j.conbuildmat.2018.07.070.
  29. Peng, Y., Ma, K., Long, G. and Xie, Y. (2019), "Influence of Nano-SiO2, Nano-CaCO3 and Nano-Al2O3 on rheological properties of cement-fly ash paste", Materials, 12, 2598. https://doi.org/10.3390/ma12162598.
  30. Petit, J.Y., Wirquin, E. and Duthoit, B. (2005), "Influence of temperature on the yield value of highly flowable micromortars made with sulfonate-based superplasticizer", Cem. Concr. Res., 35(2), 256-266. https://doi.org/10.1016/j.cemconres.2004.04.025.
  31. Petit, J.Y., Khayat, K. and Wirquin, E. (2009), "Coupled effect of time and temperature on variations of yield value of highly flowable mortar", Cem. Concr. Res., 39(3), 165-170. https://doi.org/10.1016/j.cemconres.2005.11.001.
  32. Peyvandi, A., Soroushian, P., Abdol, N. and Balachandra, A.M. (2013), "Surface-modified graphite nanomaterials for improved reinforcement efficiency in cementitious paste", Carbon, 63, 175-186. https://doi.org/10.1016/j.carbon.2013.06.069.
  33. Rashad, A.M. (2013), "A synopsis about the effect of nano-Al2O3, nano-Fe2O3, nano-Fe3O4 and nano-clay on some properties of cementitious materials-A short guide for Civil Engineer", Mater. Des., 52, 143-157. https://doi.org/10.1016/j.matdes.2013.05.035.
  34. Saak, A.W., Jennings, H.M. and Shah, S.P. (2001), "The influence of wall slip on yield stress and viscoelastic measurements of cement pastes", Cem. Concr. Res., 31(2), 205-212. https://doi.org/10.1016/S0008-8846(00)00440-3.
  35. Senff, L., Labrincha, J.A., Ferreira, V. M., Hotza, D. and Repette, W.L. (2009), "Effect of nano-silica on rheology and fresh properties of cement pastes and mortars", Constr. Build. Mater., 23(7), 2487-2491. https://doi:10.1016/j.conbuildmat.2009.02.005.
  36. Singh, L.P., Bhattacharyya, S.K. and Ahalawat, S. (2012), "Preparation of size controlled silica nano particles and its functional role in cementitious system", J. Adv. Concr. Technol., 10, 345-352. https://doi.org/10.3151/jact.10.345.
  37. Sonebi, M. (2002), "Experimental design to optimize high-volume of fly ash grout in the presence of Welan Gum and super plasticizer", Mater. Struct., 35(250), 373-380. https://doi.org/10.1007/BF02483157.
  38. Sonebi, M. (2006), "Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash", Cem. Concr. Res., 36(9), 1609-1618. https://doi.org/10.1016/j.cemconres.2006.05.016.
  39. Sonebi, M. (2010). "Optimization of cement grouts containing silica fume and viscosity modifying admixture", J. Mater. Civ. Eng., 22(4). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000026.
  40. Sonebi, M., Lachemi, M. and Hossain, K.M.A. (2013), "Optimisation of rheological parameters and mechanical properties of superplasticised cement grouts containing metakaolin and viscosity modifying admixture", Constr. Build. Mater., 38(1), 126-138. https://doi.org/10.1016/j.conbuildmat.2012.07.102.
  41. Sonebi, M., Bassuoni, M.T., Kwasny, J. and Amanuddin, A.K. (2014), "Effect of nanosilica on rheology, fresh properties, and strength of cement-based grouts", J. Mater. Civil Eng., 04014145-1. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001080.
  42. Song, S.Q., Jiang, L.H., Jiang, S.B., Yan, X.C. and Xu, N. (2018), "The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature", Constr. Build. Mater., 164, 663-671. https://doi.org/10.1016/j.conbuildmat.2018.01.011.
  43. Wagner, N.J. and Brady, J.F. (2009), "Shear thickening in colloidal dispersions", Phys. Today, 62(10), 27-32. https://doi.org/10.1063/1.3248476.
  44. Weaver, K. (1991), "Dam foundation grouting", Am. Soc. Civil Eng., 91-34635. https://doi.org/10.1061/9780784407646.
  45. Woodward, R.J. and Miller, E. (1990), "Grouting post-tensioned concrete bridges: the prevention of voids", Highway Transp., 37(6), 9-17. http://worldcat.org/issn/02656868.
  46. Yahia, A. and Khayat, K.H. (2001), "Analytical models for estimating yield stress of high-performance pseudo plastic grout", Cem. Concr. Res., 31(5), 731-738. https://doi.org/10.1016/S0008-8846(01)00476-8.
  47. Yamamoto, Y. and Kobayashi, S. (1986), "Effect of temperature on the properties of superplasticized concrete", ACI Mater. J., 83(1), 80-87.
  48. Zabihi, N. and Ozkul, M.H. (2018), "The fresh properties of nano silica incorporating polymer-modified cement pastes", Constr. Build. Mater., 168, 570-579. https://doi.org/10.1016/j.conbuildmat.2018.02.084.