DOI QR코드

DOI QR Code

Preparation of high-performance nanofiltration membrane with antioxidant properties

  • Yu, Feiyue (Beijing Originwater Membrane Technology Co., Ltd.) ;
  • Zhang, Qinglei (Beijing Originwater Membrane Technology Co., Ltd.) ;
  • Pei, Zhiqiang (Beijing Originwater Separation Membrane Technology Co., Ltd.) ;
  • Li, Xi (Cansino Biotech Co., Ltd.) ;
  • Yang, Xuexuan (Beijing Originwater Separation Membrane Technology Co., Ltd.) ;
  • Lu, Yanbin (Beijing Originwater Separation Membrane Technology Co., Ltd.)
  • Received : 2021.08.13
  • Accepted : 2022.06.16
  • Published : 2022.07.25

Abstract

In industrial production, the development of traditional polyamide nanofiltration (NF) membrane was limited due to its poor oxidation resistance, complex preparation process and high cost. In this study, a composite NF membrane with high flux, high separation performance, high oxidation resistance and simple process preparation was prepared by the method of dilute solution dip coating. And the sulfonated polysulfone was used for dip coating. The results indicated that the concentration of glycerin, the pore size of the based membrane, the composition of the coating solution, and the post-treatment process had important effects on the structure and performance of the composite NF membrane. The composite NF membrane prepared without glycerol protecting based membrane had a low flux, when the concentration of glycerin increased from 5% to 15%, the pure water flux of the composite NF membrane increased from 46.4 LMH to 108.2 LMH, and the salt rejection rate did not change much. By optimizing the coating system, the rejection rate of Na2SO4 and PEG1000 was higher than 90%, the pure water flux was higher than 40 LMH (60psi), and it can withstand 20,000 ppm.h NaClO solution cleaning. When the post treatment processes was adjusted, the salt rejection rate of NaCl solution (250 ppm) reached 45.5%, and the flux reached 62.2 LMH.

Keywords

Acknowledgement

This work was supported by Innovation Program of Beijing Postdoctoral (Young Talent) Scientific Research Funding (JCQNJC1308800).

References

  1. Abu Seman, M.N., Khayet, M. and Hilal, N. (2011), "Development of antifouling properties and performance of nanofiltration membranes modified by interfacial polymerisation", Desalination, 273(1), 36-47. https://doi.org/10.1016/j.desal.2010.09.038.
  2. Breschi, D. (1999), "Seawater distillation from low-temperature streams: A case history", Desalination, 122, 247-254. https://doi.org/10.1016/S0011-9164(99)00045-4.
  3. Chen, S.L., Bocarsly, A.B. and Benziger, J. (2005), "Nafion-layered sulfonated polysulfone fuel cell membranes", J. Power Sources, 152, 27-33. https://doi.org/10.1016/j.jpowsour.2005.03.214.
  4. Chen, X., Wang, J., Yin, D., Yang, J., Lu, J., Zhang, Y. and Chen, Z. (2013), "High-performance zeolite T membrane for dehydration of organics by a new varying temperature hot-dip coating method", AIChE J., 59(3), 936-947. https://doi.org/10.1002/aic.13851.
  5. Elyasi Kojabad, M., Momeni, M., Babaluo, A.A. and Vaezi, M.J. (2020), "PEBA/PSf multilayer composite membranes for CO2 separation: Influence of dip coating parameters", Chem. Eng. Technol., 43(7), 1451-1460. https://doi.org/10.1002/ceat.201900262.
  6. Feng, Y., Weber, M., Maletzko, C. and Chung, T.S. (2018), "Facile fabrication of sulfonated polyphenylenesulfone (sPPSU) membranes with high separation performance for organic solvent nanofiltration", J. Membr. Sci., 549, 550-558. https://doi.org/10.1016/j.memsci.2017.12.048.
  7. Guo, C., Li, N., Qian, X., Shi, J., Jing, M., Teng, K. and Xu, Z. (2020), "Ultra-thin double Janus nanofiltration membrane for separation of Li+ and Mg2+: "Drag" effect from carboxylcontaining negative interlayer", Sep. Purif. Technol., 230, 115567. https://doi.org/10.1016/j.seppur.2019.05.009.
  8. Guo, C., Qian, X., Tian, F., Li, N., Wang, W., Xu, Z. and Zhang, S. (2021), "Amino-rich carbon quantum dots ultrathin nano-filtration membranes by double "one-step" methods: Breaking through trade-off among separation, permeation and stability", Chem. Eng. J., 404, 127144. https://doi.org/10.1016/j.cej.2020.127144.
  9. Habib, Z., Khan, S.J., Ahmad, N.M., Shahzad, H.M.A., Jamal, Y. and Hashmi, I. (2020), "Antibacterial behaviour of surface modified composite polyamide nanofiltration (NF) membrane by immobilizing Ag-doped TiO2 nanoparticles", Environ. Technol., 41(28), 3657-3669. https://doi.org/10.1080/09593330.2019.1617355.
  10. Han, R., Teng, D., Zhao, Y., Jian, X. and Zhang, S. (2018), "Facile preparation of positively charged and solvent-resistant cellulose acetate/LSCF nanofiltration membranes", Chem. Eng. Technol., 41(2), 313-318. https://doi.org/10.1002/ceat.201700320.
  11. Hu, M., Cui, Z., Yang, S., Li, J., Shi, W., Zhang, W., Matindi, C., He, B., Fang, K. and Li, J. (2021), "Pregelation of sulfonated polysulfone and water for tailoring the morphology and properties of polyethersulfone ultrafiltration membranes for dye/salt selective separation", J. Membr. Sci., 618, 118746. https://doi.org/10.1016/j.memsci.2020.118746.
  12. Jacob, C. (2007), "Seawater desalination: Boron removal by ion exchange technology", Desalination, 205(1-3), 47-52. https://doi.org/10.1016/j.desal.2006.06.007.
  13. Kang, H., Shi, J., Liu, L., Shan, M., Xu, Z., Li, N., Li, J., Lv, H., Qian, X. and Zhao, L. (2018), "Sandwich morphology and superior dye-removal performances for nanofiltration membranes self-assemblied via graphene oxide and carbon nanotubes", Appl. Surf. Sci., 428, 990-999. https://doi.org/10.1016/j.apsusc.2017.09.212.
  14. Kaykioglu, G., Ata, R., Tore, G.Y. and Agirgan, A.O. (2017), "Evaluation of effects of textile wastewater on the quality of cotton fabric dye", Membr. Water Treat., 8(1), 1-18. http://doi.org/10.12989/mwt.2017.8.1.001.
  15. Lee, A., Elam, J.W. and Darling, S.B. (2016), "Membrane materials for water purification: Design, development, and application", Environ. Sci. Water Res. Technol., 2(1), 17-42. https://doi.org/10.1039/c5ew00159e.
  16. Li, X., Cao, Y., Yu, H., Kang, G., Jie, X., Liu, Z. and Yuan, Q. (2014), "A novel composite nanofiltration membrane prepared with PHGH and TMC by interfacial polymerization", J. Membr. Sci., 466, 82-91. https://doi.org/10.1016/j.memsci.2014.04.034.
  17. Peng, X., Jin, J., Nakamura, Y., Ohno, T. and Ichinose, I. (2009), "Ultrafast permeation of water through protein-based membranes", Nat. Nanotechnol., 4(6), 353-357. https://doi.org/10.1038/nnano.2009.90.
  18. Sarango, L., Paseta, L., Navarro, M., Zornoza, B. and Coronas, J. (2018), "Controlled deposition of MOFs by dip-coating in thin film nanocomposite membranes for organic solvent nanofiltration", J. Ind. Eng. Chem., 59, 8-16. https://doi.org/10.1016/j.jiec.2017.09.053.
  19. Seman, M.N.A., Khayet, M. and Hilal, N. (2010), "Nano-filtration thin-film composite polyester polyethersulfone-based membranes prepared by interfacial polymerization", J. Membr. Sci., 348(1-2), 109-116. https://doi.org/10.1016/j.memsci.2009.10.047.
  20. Song, D., Xu, J., Fu, Y., Xu, L. and Shan, B. (2016), "Polysulfone/sulfonated polysulfone alloy membranes with an improved performance in processing mariculture wastewater", Chem. Eng. J., 304, 882-889. https://doi.org/10.1016/j.cej.2016.07.009.
  21. Toraj Mohammadi and Kaviani, A. (2003), "Water shortage and seawater desalination by electrodialysis", Desalination, 158, 267-270. https://doi.org/10.1016/S0011-9164(03)00462-4.
  22. Xu, L., He, Y., Feng, X., Dai, F., Yang, N., Zhao, Y. and Chen, L. (2018), "A comprehensive description of the threshold flux during oil/water emulsion filtration to identify sustainable flux regimes for tannic acid (TA) dip-coated poly(vinylidene fluoride) (PVDF) membranes", J. Membr. Sci., 563, 43-53. https://doi.org/10.1016/j.memsci.2018.05.055.
  23. Xu, P., Wang, W., Qian, X., Wang, H., Guo, C., Li, N., Xu, Z., Teng, K. and Wang, Z. (2019), "Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio", Desalination, 449, 57-68. https://doi.org/10.1016/j.desal.2018.10.019.
  24. Xu, W., Chen, Q. and Ge, Q. (2017), "Recent advances in forward osmosis (FO) membrane: Chemical modifications on membranes for FO processes", Desalination, 419, 101-116. https://doi.org/10.1016/j.desal.2017.06.007.
  25. Xu, Z., Wu, T., Shi, J., Teng, K., Wang, W., Ma, M., Li, J., Qian, X., Li, C. and Fan, J. (2016), "Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment", J. Membr. Sci., 520, 281-293. https://doi.org/10.1016/j.memsci.2016.07.060.
  26. Yu, F., Shi, H., Shi, J., Teng, K., Xu, Z. and Qian, X. (2020), "High-performance forward osmosis membrane with ultra-fast water transport channel and ultra-thin polyamide layer", J. Membr. Sci., 616, 118611. https://doi.org/10.1016/j.memsci.2020.118611.
  27. Zhao, Y., Wang, X., Ren, Y. and Pei, D. (2018), "Mesh-embedded polysulfone/sulfonated polysulfone supported thin film composite membranes for forward osmosis", ACS Appl. Mater. Interf., 10(3), 2918-2928. https://doi.org/10.1021/acsami.7b15309.