DOI QR코드

DOI QR Code

Effect of a Coupled Atmosphere-ocean Data Assimilation on Meteorological Predictions in the West Coastal Region of Korea

대기-해양 결합 자료동화가 서해 연안지역의 기상예측에 미치는 영향 연구

  • Lee, Sung-Bin (Faculty of Earth and Marine Convergence/Earth and Marine Science Major, Jeju National University) ;
  • Song, Sang-Keun (Department of Earth and Marine Sciences, Jeju National University) ;
  • Moon, Soo-Hwan (Faculty of Earth and Marine Convergence/Earth and Marine Science Major, Jeju National University)
  • 이성빈 (제주대학교 지구해양융합학부 지구해양전공) ;
  • 송상근 (제주대학교 지구해양과학과) ;
  • 문수환 (제주대학교 지구해양융합학부 지구해양전공)
  • Received : 2022.06.05
  • Accepted : 2022.06.23
  • Published : 2022.07.31

Abstract

The effect of coupled data assimilation (DA) on the meteorological prediction in the west coastal region of Korea was evaluated using a coupled atmosphere-ocean model (e.g., COAWST) in the spring (March 17-26) of 2019. We performed two sets of simulation experiments: (1) with the coupled DA (i.e., COAWST_DA) and (2) without the coupled DA (i.e., COAWST_BASE). Overall, compared with the COAWST_BASE simulation, the COAWST_DA simulation showed good agreement in the spatial and temporal variations of meteorological variables (sea surface temperature, air temperature, wind speed, and relative humidity) with those of the observations. In particular, the effect of the coupled DA on wind speed was greatly improved. This might be primarily due to the prediction improvement of the sea surface temperature resulting from the coupled DA in the study area. In addition, the improvement of meteorological prediction in COAWST_DA simulation was also confirmed by the comparative analysis between SST and other meteorological variables (sea surface wind speed and pressure variation).

Keywords

Acknowledgement

이 논문은 2022학년도 제주대학교 교원성과지원사업에 의하여 연구되었음.

References

  1. An, H. Y., Kim, Y. K., Jeong, J. H., 2017, Impacts of land cover change of tidal flats on local meteorology in Gyeonggi Bay, West Sea of Korea, Atoms., 27, 399-409.
  2. An, H. Y., Jeong, J. H., Kim, Y. K., 2021, Impact of tidal effects on fog events in the Western Coast of Korea, J. Environ. Sci. Int., 30, 925-936. https://doi.org/10.5322/JESI.2021.30.11.925
  3. An, H. Y., 2020, Analysis of the meteorological impacts of the time-and space-varying physical environment in the intertidal zone due to the tidal effects in west sea of Korea, Ph. D. Dissertation, Pusan National University, Busan, Korea.
  4. Arakawa, A., Lamb, V. R., 1977, Computational design of the basic dynamical processes of the UCLA general circulation model, In Methods in Computational Physics, 17, Academic Press, New York, 173-265.
  5. Balmaseda, M., Anderson, D., 2009, Impact of initialization strategies and observations on seasonal forecast skill. Geophys. Res. Lett., 36, L011701.
  6. Barker, D. M., Huang, W., Guo, Y. R., Bourgeois, A. J., Xiao, Q. N., 2004, A Three-dimensional variational data assimilation system for MM5: implementation and initial results, Mon. Wea. Rev., 132, 897-914. https://doi.org/10.1175/1520-0493(2004)132<0897:atvdas>2.0.co;2
  7. Burls, N., Reason, C. J. C., 2008, Modelling the sensitivity of coastal winds over the Southern Benguela upwelling system to different SST forcing, J. Mar. Syst., 74, 561-584. https://doi.org/10.1016/j.jmarsys.2008.04.009
  8. Carrier, M. J., Ngodock, H., Smith, S., Jacobs, G., Muscarella, P., Ozgokmen, T., Brian, H., Lipphardt, B., 2014, Impact of assimilating ocean velocity observations inferred from Lagrangian drifter data using the NCOM-4DVAR, Mon. Wea. Rev., 142, 1509-1524. https://doi.org/10.1175/mwr-d-13-00236.1
  9. Cho, S. B., Song, S. K., Moon, S. H., 2021, Effect of analysis nudging data assimilation on the PM2.5 concentration simulation during a haze event in the Seoul metropolitan area in 2019, J. Korean Soc. Atmos. Environ., 37, 231-247. https://doi.org/10.5572/KOSAE.2021.37.2.231
  10. Choi, W., Lee, J. G., Kim, Y. J., 2012, Sensitivities of WRF simulations to the resolution of analysis data and to application of 3DVAR: a case sutdy, Atmos., 22, 387-400. https://doi.org/10.14191/Atmos.2012.22.4.387
  11. Courtier, P., Thepaut, J. N., Hollingsworth, A., 1994, A Strategy for operational implementation of 4D-Var, using an incremental approach, Quart. J. Roy. Meteor. Soc., 120, 1367-1387. https://doi.org/10.1002/qj.49712051912
  12. Deremble, B., Lapeyre, G., Ghil, M., 2012, Atmospheric dynamics triggered by an oceanic SST front in a moist quasigeostrophic model, J. Atmos. Sci., 69, 1617-1632. https://doi.org/10.1175/JAS-D-11-0288.1
  13. Dudhia, J., 1989, Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model, J. Atmos. Sci., 46, 3077-3107. https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
  14. Dudhia, J., 1996, A Multi-layer soil temperature model for MM5, The Sixth PSU/NCAR mesoscale model users' workshop, Boulder, CO, USA: National Center for Atmospheric Research, 22-24.
  15. Edwards, C. A., Moore, A. M., Hoteit, I., Cornuelle, B. D., 2015, Regional ocean data assimilation, Ann. Rev. Mar. Sci., 7, 21-42. https://doi.org/10.1146/annurev-marine-010814-015821
  16. Egbert, G. D., Erofeeva, S. Y., 2002, Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol., 19, 183-204. https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
  17. Ha, J. H., Kim, H. W., Lee, D. K., 2011, Observation and numerical simulations with radar and surface data assimilation for heavy rainfall over central Korea, Adv. Atmos. Sci., 28, 573-590. https://doi.org/10.1007/s00376-010-0035-y
  18. Han, S. B., Song, S. K., Shon, Z. H., Kang, Y. H., Bang, J. H., Oh, I., 2021, Comprehensive study of a long-lasting severe haze in Seoul megacity and its impacts on fine particulate matter and health, Chemosphere, 268, 129369, 1-12.
  19. Han, S. B., Song, S. K., Moon, S. H., 2022, Concentration characteristics of PM2.5 and the contributions of physical and chemical processes to its production during 2019 PM2.5 episodes in Seoul, J. Korean Soc. Atmos. Environ., 38, 220-236. https://doi.org/10.5572/KOSAE.2022.38.2.220
  20. Han, Y. H., Jeong, J. S., 1991, On the effects of sea surface temperature to temperature and humidity of Western Region of Korea, Asia-Pac. J. Atmos. Sci., 27, 197-203.
  21. Hong, S. Y., Dudhia, J., Chen, S. H., 2004, A Revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation, Mon. Wea. Rev., 132, 103-120. https://doi.org/10.1175/1520-0493(2004)132<0103:aratim>2.0.co;2
  22. Hong, S. Y., Lim, J. O. J., 2006, The WRF single-moment 6-class microphysics scheme (WSM6), Asia. Pac. J. Atmos. Sci., 42, 129-151,
  23. Janekovi , I., Powell, B. S., Matthews, D., McManus, ? M. A., Sevadjian, J., 2013, 4D-Var data assimilation in a nested, coastal ocean model: a Hawaiian case study, J. Geophys. Res. Oceans., 118, 5022-5035. https://doi.org/10.1002/jgrc.20389
  24. Jung, T. S., Jeong, J. K., 2013, Spatial distribution and time variation of m2 tide and m4 tide in the western coast of korea, J. Korean Soc. Coast. Ocean. Eng., 25, 255-265. https://doi.org/10.9765/KSCOE.2013.25.4.255
  25. Kang, Y. Q., Jin, M. S., 1984, Seasonal variation of surface temperatures in the neighbouring seas of Korea, J. Korean Soc. Oceanogr., 19, 31-35.
  26. Kumar, N., Voulgaris, G.., Warner, J. C., Olabarrieta, M., 2012, Implementation of the vortex force formalism in the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system for inner shelf and surf zone applications, Ocean Model., 47, 65-95. https://doi.org/10.1016/j.ocemod.2012.01.003
  27. Lee, C. I., Lee, J. H., Kim, D. S., 2007, Effects of meteorological factors on water temperature, salinity in the West Sea of Korea, J. Korean. Soc. Mar., 13, 29-37.
  28. Lee, H. W., Kim, Y. K., Jung, W. S., 2000, A numerical simulation for an effect of terrain on the onset of a sea breeze over the complex coastal area, Asia-Pac. J. Atmos. Sci., 36, 561-572.
  29. Lee, H. W., Won, H. Y., Choi, H. J., Lee, K. Y., 2005, Numerical simulation of effect on atmospheric flow field using high resolution terrain height data in complex coastal regions, J. Korean Soc. Atmos., 21, 179-189.
  30. Lee, J. H., Kim, T. K., Pang, I. C., Moon, J. H., 2018, 4DVAR data assimilation with the regional ocean modeling system (ROMS): impact on the water mass distributions in the Yellow Sea. Ocean. Sci. J., 53, 165-178. https://doi.org/10.1007/s12601-018-0013-3
  31. Lee, J. H., Moon, J. H., Choi, Y. J., 2020, Comparison of data assimilation methods in a regional ocean circulation model for the Yellow and East China seas, Ocean Polar Res., 42, 179-194.
  32. Lee, S. H., Chun, J. H., 2003, The distribution of snowfall by Siberian High in the Honam region, J. Korean Geol. Soc., 38, 173-183.
  33. Lee, Y. H., Ahn, K. D., Lee, Y. H., 2016, Parametrization of the tidal effect for use in the Noah land-surface model: development and validation, Boundary. Layer. Meteorol., 161, 561-574. https://doi.org/10.1007/s10546-016-0178-1
  34. Lim, E. H., Kim, Y. H., Lee, C. W., 2003, The assimilation effect of radar gaze velocity data in 3D variational data assimilation for regions, Atoms., 13, 94-97.
  35. Lim, K. S. S., Hong, S. Y., 2010, Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models, Mon. Wea. Rev., 138, 1587-1612. https://doi.org/10.1175/2009mwr2968.1
  36. Liu, N., Ling, T., Wang, H., Zhang, Y., Gao, Z., Wang, Y., 2015, Numerical simulation of Typhoon Muifa (2011) using a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system, J. Ocean. Univ. China., 14, 199-209. https://doi.org/10.1007/s11802-015-2415-5
  37. Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., Clough, S. A., 1997, Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, J. Geophys. Res. Atmos., 102, 16663-16682. https://doi.org/10.1029/97JD00237
  38. Moon, S. H., Song, S. K., 2021, Influence of hourly changes in land cover and surface physical conditions due to tides on coastal meteorology in the Yellow Sea, Proceedings of the Autumn Meeting of Korean Meteorological Society Conferences, Korea, 287-287.
  39. Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Weaver, A. T., Zavala-Garay, J., 2011a, The Regional Ocean Modeling System (ROMS) 4-dimensional variational data assimilation systems: Part-I System overview and formulation, Prog. Oceanogr., 91, 34-49. https://doi.org/10.1016/j.pocean.2011.05.004
  40. Moore, A. M., Arango, H. G., Broquet, G., Edwards, C., Veneziani, M., Powell, B., Robinson, P., 2011b, The regional ocean modeling system (ROMS) 4-dimensional variational data assimilation systems: part-II performance and application to the California Current System, Prog. Oceanogr., 91, 50-73. https://doi.org/10.1016/j.pocean.2011.05.003
  41. Murphy, J., Kattsov, V., Keenlyside, N., Kimoto, M., Meehl, G., Mehta, V., Smith, D., 2010, Towards prediction of decadal climate variability and change, Procedia. Environ. Sci., 1, 287-304. https://doi.org/10.1016/j.proenv.2010.09.018
  42. Olabarrieta, M., Warner, J. C., Armstrong, B., Zambon, J. B., He, R., 2012, Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: an application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system, Ocean Model., 43, 112-137. https://doi.org/10.1016/j.ocemod.2011.12.008
  43. Park, G. Y., Mo, S. J., Ryu, C. S., 2005, The effect of sea temperature on the climate of Honam West Coast, J. Korean Earth Sci. Soc., 2005, 356-364.
  44. Parrish, D. F., Derber, J. C., 1992, The National Meteorological Center's spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747-1763. https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
  45. Phadnis, M. J., Robe, F. R., Klausmann, A. M., Scire, J. S., 2003, Importance of the spatial resolution of sea-surface-temperature data in meteorological modeling, In Proceedings of the 13th PSU/NCAR Mesoscale Model User's Workshop, Boulder, CO, USA, 11.
  46. Qian, H., Suxiang, Y., Yaocun, Z., 2012, Analysis of local air-sea interaction in East Asia using a regional air-sea coupled model, J. Clim., 25, 767-776. https://doi.org/10.1175/2011JCLI3783.1
  47. Routray, A., Mohanty, U. C., Niyogi, D., Rizvi, S. R. H., Osuri, K. K., 2010, Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system, Meteorol. Atmos. Phys., 106, 107-125. https://doi.org/10.1007/s00703-009-0054-3
  48. Roxy, M., Tanimoto, Y., 2007, Role of SST over the Indian Ocean in influencing the intraseasonal variability of the Indian summer monsoon, J. Meteorol. Soc. Japan., 85, 349-358. https://doi.org/10.2151/jmsj.85.349
  49. Shafran, P. C., Seaman, N. L., Gayno, G. A., 2000, Evaluation of numerical predictions of boundary layer structure during the Lake Michigan Ozone Study, J. Appl. Meteorol. Climatol., 39, 412-426. https://doi.org/10.1175/1520-0450(2000)039<0412:EONPOB>2.0.CO;2
  50. Shchepetkin, A. F., McWilliams, J. C., 2005, The regional oceanic modeling system (ROMS): a split-explicit, fr ee-surface, topography-following-coordinate oceanic model, Ocean model., 9, 347-404. https://doi.org/10.1016/j.ocemod.2004.08.002
  51. Skamarock, W. C., Klemp, J. B., 2008, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications, J. Comput. Phys., 227, 3465-3485. https://doi.org/10.1016/j.jcp.2007.01.037
  52. Smith, P. J., Fowler, A. M., Lawless, A. S., 2015, Exploring strategies for coupled 4D-Var data assimilation using an idealised atmosphere-ocean model, Tellus A: Dyn. Meteorol. Oceanogr., 67, 27025. https://doi.org/10.3402/tellusa.v67.27025
  53. Song, S. K., Shon, Z. H., Bae, M. S., Cho, S. B., Moon, S. H., Kim, H. S., Son, Y. B., Lee, C. R., 2022, Effects of natural and anthropogenic emissions on the composition and toxicity of aerosols in the marine atmosphere, Sci. Total Environ., 806, 1-14.
  54. Warner, J. C., Armstrong, B., He, R., Zambon, J. B., 2010, Development of a coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system, Ocean model., 35, 230-244. https://doi.org/10.1016/j.ocemod.2010.07.010
  55. Yanai, M., Tomita, T., 1998, Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP-NCAR reanalysis, J. Clim., 11, 463-482. https://doi.org/10.1175/1520-0442(1998)011<0463:SAIVOA>2.0.CO;2
  56. Yoon, H. J., Park, H. S., Kim, B. S., Park, J. H., Lim, J. O., Boo, K. O., Kang, H. S., 2019, Application of weakly coupled data assimilation in global NWP System, Atoms., 29, 219-226.