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MIAO-TAM EQUATION ON

ALMOST COKÄHLER MANIFOLDS

Tarak Mandal

Abstract. In the present paper, we have studied Miao-Tam equation

on three dimensional almost coKähler manifolds. We have also proved
that there does not exist non-trivial solution of Miao-Tam equation on

the said manifolds if the dimension is greater than three. Also we give an
example to verify the deduced results.

1. Introduction

Recently, the study of differentiable manifolds endowed with certain struc-
tures, namely almost contact and almost complex structures has become a
subject of growing interest due to their applications in relativity, cosmology,
string theory etc. An odd dimensional differentiable manifold M equipped with
a (1, 1) tensor field φ, a vector field ξ, a 1-form η satisfying

(1) φ2X = −X + η(X)ξ, η(ξ) = 1

for any X ∈ χ(M), the set of all vector fields on M , is known as an almost
contact manifold [4].

If the 2-form Φ given by Φ(X,Y ) = g(φX, Y ) for any X, Y ∈ χ(M) and
the 1-form η both are closed, then the almost contact manifold is called an
almost coKähler manifold [3]. Due to additional properties that Φ and η are
closed almost coKähler manifolds show some special properties which are not
found generally in almost contact manifolds. Therefore almost coKähler man-
ifolds need special attention. In 1967, Blair [3] introduced the notion of al-
most coKähler manifolds. The almost coKähler manifolds are odd dimensional
analogues of the almost Kähler manifolds [17]. So many examples of almost
coKähler manifolds have been constructed by various authors. For instance,
the Riemannian product of a real line and an almost Kähler manifold admits
an almost coKähler manifold [19, 23, 24]. Many authors such as Blair [5], De
and Sardar [11], De, Majhi and Suh [10], Dacko [8], Dacko and Olszak [9],
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Goldberg and Yano [14], Olszak [23, 24], and Wang [27, 28] have been studied
almost coKähler manifolds.

In [18], Miao-Tam equation has been studied on normal almost contact
manifold. Due to distinguishing nature of almost coKähler manifolds we feel
the necessity of investigation of Miao-Tam equation on almost coKähler mani-
folds. Miao-Tam equation on a compact Riemannian manifoldMn of dimension
greater than two is given by

(2) − (∆gλ)g +∇2
gλ− λS = g,

where λ : Mn → R is smooth on the manifold Mn and λ = 0 on the boundary
∂Mn. ∆g, ∇2

g are the negative Laplacian and Hessain operator, respectively,
with respect to the metric g. For details see ([2, 20]). In the paper [21], the
authors studied conformally flat Riemannian manifolds satisfying Miao-Tam
equation. Miao-Tam equation on different manifolds has been studied by sev-
eral other authors ([1, 7, 12,13,16,25,26]).

The present paper is organized as follows: After introduction, we give some
preliminaries in Section 2. In Section 3, we have studied three dimensional
(κ, µ)-almost coKähler manifolds satisfying Miao-Tam equation. In the same
section we have proved that there does not exist a non-trivial solution of the
Miao-Tam equation if the dimension of the (κ, µ)-almost coKähler manifold
is greater than three. In the last section, we give an example to verify the
deduced results.

2. Preliminaries

An almost contact manifold satisfying (1) is called an almost contact metric
manifold if it admits a Riemannian metric g satisfying

g(φX, φY ) = g(X,Y )− η(X)η(Y ).

As a consequence of (1) and the above equation, we have

φξ = 0, g(X, ξ) = η(X), η(φX) = 0,

g(φX, Y ) = −g(X,φY )

for any vector fields X, Y ∈ χ(M) ([11,15]).
For an almost coKähler manifold the 2-form Φ and the 1-form η are closed.

That is, dΦ = 0 and dη = 0.
On an almost coKähler manifold, we also have ([11,15])

(3) hξ = 0, tr(h) = 0, hφ = −φh,

(4) ∇Xξ = hφX,

φlφ− l = 2h2
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for any vector field X ∈ χ(M). Here the operators h and l are defined by
h = 1

2Lξφ and l = R(·, ξ)ξ, respectively, where R is the Riemannian curva-
ture tensor and L is the Lie differentiation operator. ‘tr’ denotes trace. The
operators h and l both are symmetric.

For an almost coKähler manifold the 1-form η satisfies

(∇Xη)Y − (∇Y η)X = 0

for any vector fields X, Y ∈ χ(M).
In [6], Blair et al. introduced the idea of (κ, µ)-nullity distribution in the

context of contact geometry. The vector field ξ is said to belong to (κ, µ)-
nullity distribution if

(5) R(X,Y )ξ = κ[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]

for any vector fields X, Y ∈ χ(M) and κ, µ being real numbers. If κ, µ both
are smooth functions on the manifold, then the nullity distribution is called
generalized (κ, µ)-nullity distribution.

If the Reeb vector field ξ of an almost coKähler manifold belongs to (κ, µ)-
nullity distribution, then it is called a (κ, µ)-almost coKähler manifold. For
details see ([11,15]). On a (κ, µ)-almost coKähler manifold, one obtains

(6) h2X = κφ2X,

(7) S(X, ξ) = 2nκη(X),

(8) Qξ = 2nκξ

for any vector field X ∈ χ(M), where S and Q are the Ricci tensor of type
(0,2) and Ricci operator, respectively.

Now let us recall two known lemmas:

Lemma 2.1 ([27]). Let M2n+1 be a (κ, µ)-almost coKähler manifold of dimen-
sion greater than 3 with κ < 0. Then the Ricci operator Q is given by

(9) QX = µhX + 2nκη(X)ξ

for all vector field X on M2n+1, where κ is a non-zero constant and µ is
a smooth function satisfying dµ ∧ η = 0. Moreover, the scalar curvature of
M2n+1 is 2nκ.

Lemma 2.2 ([13]). Let (M2n+1, g) be a Riemannian manifold of dimension
(2n + 1) satisfying the Miao-Tam equation. Then the curvature tensor R can
be expressed as

(10)
R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + λ((∇XQ)Y − (∇YQ)X)

+ (Xf)Y − (Y f)X

for any vector fields X, Y on M , where f = − rλ+1
2n and D is the gradient

operator.
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Moreover,

(11) ∇XDλ = λQX + fX

for any vector field X.

3. Almost coKähler manifolds satisfying Miao-Tam equation

In the present section, we study (κ, µ)-almost coKähler manifolds with κ < 0
which satisfy Miao-Tam equation.

Theorem 3.1. If a (κ, µ)-almost coKähler manifold of dimension three satisfy

Miao-Tam equation, then either µ2 = − (6κ−r)2
4κ or the potential function is

constant, i.e., the manifold is Einstein.

Proof. Taking inner product of (10) with the vector field ξ and using (7), we
get

(12)

g(R(X,Y )Dλ, ξ) = 2κ(Xλ)η(Y )− 2κ(Y λ)η(X)

+ λ[g((∇XQ)ξ, Y )− g((∇YQ)ξ,X)]

+ (Xf)η(Y )− (Y f)η(X).

Since any Riemannian metric g satisfying the Miao-Tam equation must have
constant scalar curvature [20], r is constant. Thus we have (Xf) = − r2 (Xλ)
and (Y f) = − r2 (Y λ). Therefore from (12), we get

(13)
g(R(X,Y )Dλ, ξ) = (2κ− r

2
)[(Xλ)η(Y )− (Y λ)η(X)]

+ λ[g((∇XQ)ξ, Y )− g((∇YQ)ξ,X)].

Taking covariant derivative of (8) along the vector field X, we obtain

(14) (∇XQ)ξ = 2κhφX −QhφX.

Using (14) in (13), we get

g(R(X,Y )Dλ, ξ) = (2κ− r

2
)[(Xλ)η(Y )− (Y λ)η(X)]

− λ[S(hφX, Y )− S(X,hφY )].

Putting X = ξ in the above equation and using (7), we get

(15) g(R(ξ, Y )Dλ, ξ) = (2κ− r

2
)[(ξλ)η(Y )− (Y λ)].

Putting X = ξ in (5) and then taking inner product with Dλ, we get

(16) g(R(ξ, Y )ξ,Dλ) = κ[(ξλ)η(Y )− (Y λ)]− µ(hY λ).

Since g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z) for all vector fields X, Y , Z and
W , from (15) and (16), we get

(17) (3κ− r

2
)[(ξλ)η(Y )− (Y λ)] = µ(hY λ).
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Replacing Y by hY in (17), we obtain

(18) (hY λ) = − 2κµ

6κ− r
[(ξλ)η(Y )− (Y λ)].

Therefore, from (17) and (18), we obtain

(6κ− r)2 + 4κµ2

2(6κ− r)
[(ξλ)η(Y )− (Y λ)] = 0.

Thus, there arise two cases

Case-I: (6κ− r)2 + 4κµ2 = 0, which gives µ2 = − (6κ−r)2
4κ .

Case-II: (Y λ) = (ξλ)η(Y ), which gives

(19) Dλ = (ξλ)ξ.

Taking differentiation of (19) covariantly along the vector field X and using
(4), we get

(20) ∇XDλ = X(ξλ)ξ + (ξλ)hφX.

Comparing (11) and (20), we get

X(ξλ)ξ + (ξλ)hφX = λQX + fX.

Tracing over X in the above equation and using tr(hφ) = 0, we obtain

(21) ξ(ξλ) = rλ+ 3f,

where r is the scalar curvature.
Putting X = ξ in (11) and taking inner product with ξ, we get

(22) ξ(ξλ) = λS(ξ, ξ) + f.

From (7), we get

(23) S(ξ, ξ) = 2κ.

From (22) and (23), we obtain

(24) ξ(ξλ) = 2κλ+ f.

Comparing (21) and (24), we get

λ = − 1

2κ
,

which is a non-zero constant. �

Theorem 3.2. There does not exist a non-trivial solution of Miao-Tam equa-
tion on a (κ, µ)-almost coKähler manifold M2n+1 of dimension greater than
three with κ < 0.
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Proof. Taking inner product of (10) with the vector field ξ and using (7), we
get

(25)

g(R(X,Y )Dλ, ξ) = 2nκ(Xλ)η(Y )− 2nκ(Y λ)η(X)

+ λ[g((∇XQ)ξ, Y )− g((∇YQ)ξ,X)]

+ (Xf)η(Y )− (Y f)η(X).

Since r is constant, we have (Xf) = − r
2n (Xλ) and (Y f) = − r

2n (Y λ). There-
fore from (25), we get

(26)
g(R(X,Y )Dλ, ξ) = (2nκ− r

2n
)[(Xλ)η(Y )− (Y λ)η(X)]

+ λ[g((∇XQ)ξ, Y )− g((∇YQ)ξ,X)].

Taking covariant derivative of equation (8) along the vector field X, we obtain

(27) (∇XQ)ξ = 2nκhφX −QhφX.

Using (27) in (26), we get

(28)
g(R(X,Y )Dλ, ξ) = (2nκ− r

2n
)[(Xλ)η(Y )− (Y λ)η(X)]

− λ[S(hφX, Y )− S(X,hφY )].

Replacing X by φX and Y by φY in (28), we obtain

(29) g(R(φX, φY )Dλ, ξ) = −λ[S(hφ2X,φY )− S(φX, hφ2Y )].

From (3), (6) and (9), we obtain

(30) S(hφ2X,φY ) = µκg(X,φY ).

Therefore, from (29) and (30), we get

(31) g(R(φX, φY )Dλ, ξ) = −2µκλg(X,φY ).

Also, replacing X by φX and Y by φY in (5) and then taking inner product
with Dλ, we obtain

(32) g(R(φX, φY )ξ,Dλ) = 0.

Since g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z) for all vector fields X, Y , Z and
W , from (31) and (32), we get

(33) µκλg(X,φY ) = 0.

Since κ < 0, from (33), we get

µλ = 0.

Let us assume that λ 6= 0 in some open subset Ω of the manifold. Then
µ = 0 on Ω.

Now, putting X = ξ in (5) and then taking inner product with Dλ, we get

(34) g(R(ξ, Y )ξ,Dλ) = κ[(ξλ)η(Y )− (Y λ)].
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Again, putting X = ξ in (28) and using (7), we get

(35) g(R(ξ, Y )Dλ, ξ) = (2nκ− r

2n
)[(ξλ)η(Y )− (Y λ)].

Since g(R(X,Y )Z,W ) = −g(R(X,Y )W,Z) for all vector fields X, Y , Z and
W , from (34) and (35), we get

(36) 2nκ[(ξλ)ξ − (Y λ)] = 0,

since r = 2nκ.
Therefore, from (36), we get

(37) Dλ = (ξλ)ξ,

since κ < 0.
Taking covariant derivative of (37) and using (4), we get

(38) ∇XDλ = X(ξλ)ξ + (ξλ)hφX.

Also, from (9) and (11), we get

(39) ∇XDλ = 2nκλη(X)ξ − (κλ+
1

2n
)X.

Comparing (38) and (39), we get

(40) X(ξλ)ξ + (ξλ)hφX = 2nκλη(X)ξ − (κλ+
1

2n
)X.

Tracing over X in (40) and using tr(hφ) = 0, we obtain

(41) ξ(ξλ) = −(κλ+
2n+ 1

2n
).

Again, putting X = ξ in (39) and then taking inner product with ξ, we get

(42) ξ(ξλ) = 2nκλ− (κλ+
1

2n
).

From (41) and (42), we get

(43) 2nκλ+ 1 = 0.

Again, operating (40) by φ and using (3) and (43), we get

(ξλ) = 0.

Therefore, from (37), λ is a constant.
Thus, from (2), we get

(44) S(X,Y ) = − 1

λ
g(X,Y ).

Putting X = Y = ei in (44), where {ei} is the orthonormal basis of the tangent
space of the manifold and summing over i, 1 ≤ i ≤ 2n+ 1, we obtain

λ = −2n+ 1

2nκ
,

since r = 2nκ.
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Thus

(45) S(X,Y ) =
2nκ

2n+ 1
g(X,Y ).

PuttingX = Y = ξ in (45) and using (7), we get κ = 0, which is a contradiction.
�

4. Example

In the paper [22], the authors have constructed an example of almost
coKähler manifold of dimension three. Now we construct an example of al-
most coKähler manifold of dimension five following this example.

Let us consider the manifold M = {x, y, u, v, z ∈ R5 : z 6= 0} of dimension
5, where {x, y, u, v, z} are standard co-ordinates in R5. We choose the vector
fields

e1 = e
z
2
∂

∂x
− e− z

2
∂

∂y
, e2 = e

z
2
∂

∂x
+ e−

z
2
∂

∂y
,

e3 = e
z
2
∂

∂u
− e− z

2
∂

∂v
, e4 = e

z
2
∂

∂u
+ e−

z
2
∂

∂v
, e5 =

∂

∂z
,

which are linearly independent at each point of M . We get the following by
direct computations

[e1, e2] = 0, [e1, e3] = 0, [e1, e4] = 0, [e1, e5] = −1

2
e2,

[e2, e3] = 0, [e2, e4] = 0, [e2, e5] = −1

2
e1,

[e3, e4] = 0, [e3, e5] = −1

2
e4, [e4, e5] = −1

2
e3.

Let the metric tensor g be defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = g(e4, e4) = g(e5, e5) = 1

and g(ei, ej) = 0 for all i 6= j; i, j = 1, 2, 3, 4, 5.
The 1-form η is defined by η(X) = g(X, e5) for all X on M . Let φ be the

(1, 1)-tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = −e4, φ(e4) = e3, φ(e5) = 0.

Then we find that

η(e5) = 1, φ2X = −X + η(X)e5,

g(φX, φY ) = g(X,Y )− η(X)η(Y )

for any vector fields X, Y on M . Thus (φ, e5, η, g) defines an almost contact
metric structure.

For the Levi-Civita connection ∇ with respect to the metric g on M , we can
write

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

− g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]),

which is known as Koszul’s formula.
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By Koszul’s formula, we get the following expressions:

∇e1e1 = 0, ∇e1e2 =
1

2
e5, ∇e1e3 = 0, ∇e1e4 = 0,

∇e1e5 = −1

2
e2, ∇e2e2 = 0, ∇e2e1 =

1

2
e5, ∇e2e3 = 0,

∇e2e4 = 0, ∇e2e5 = −1

2
e1, ∇e3e1 = 0, ∇e3e2 = 0,

∇e3e3 = 0, ∇e3e4 =
1

2
e5, ∇e3e5 = −1

2
e4, ∇e4e1 = 0,

∇e4e2 = 0, ∇e4e3 =
1

2
e5, ∇e4e4 = 0, ∇e4e5 = −1

2
e3,

∇e5e1 = 0, ∇e5e2 = 0, ∇e5e3 = 0,

∇e5e4 = 0, ∇e5e5 = 0.

From the above expressions of ∇, we conclude that the given manifold is an
almost coKähler manifold with he1 = − 1

2e1, he2 = 1
2e2, he3 = − 1

2e3, he4 = 1
2e4

and he5 = 0.
Using the formula R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, we get

R(e1, e2)e1 = −1

4
e2, R(e1, e2)e2 =

1

4
e1, R(e2, e5)e5 = −1

4
e2,

R(e5, e2)e2 = −1

4
e5, R(e1, e5)e5 = −1

4
e1, R(e5, e1)e1 = −1

4
e5,

R(e3, e4)e3 = −1

4
e4, R(e3, e4)e4 =

1

4
e3, R(e3, e5)e5 = −1

4
e3,

R(e5, e3)e3 = −1

4
e5, R(e4, e5)e5 = −1

4
e4, R(e5, e4)e4 = −1

4
e5

and the remaining R(ei, ej)ek = 0, i, j, k = 1, 2, 3, 4, 5.
From above, we conclude that the manifold is a (κ, µ)-almost coKähler man-

ifold with κ = − 1
4 and µ = 0.

From the expressions of curvature tensor, we get

S(e1, e1) = 0, S(e2, e2) = 0, S(e3, e3) = 0,

S(e4, e4) = 0, S(e5, e5) = −1

and S(ei, ej) = 0, for all i 6= j; i, j = 1, 2, 3, 4, 5.
Let r be the scalar curvature. Then from above, we get

r = S(e1, e1) + S(e2, e2) + S(e3, e3) + S(e4, e4) + S(e5, e5) = −1.

Let λ = ez + b, where b is a constant. Therefore, Dλ = eze5 = (λ − b)e5.
Thus we get the following:

∇e1Dλ = −1

2
(λ− b)e2, ∇e2Dλ = −1

2
(λ− b)e1,

∇e3Dλ = −1

2
(λ− b)e4, ∇e4Dλ = −1

2
(λ− b)e3, ∇e5Dλ = (λ− b)e5.
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From the above expressions, we get

∆gλ = (λ− b).

Thus,

−(∆gλ)g(e1, e1) + g(∇e1Dλ, e1)− λS(e1, e1) = −(λ− b),
−(∆gλ)g(e2, e2) + g(∇e2Dλ, e2)− λS(e2, e2) = −(λ− b),
−(∆gλ)g(e3, e3) + g(∇e3Dλ, e3)− λS(e3, e3) = −(λ− b),
−(∆gλ)g(e4, e4) + g(∇e4Dλ, e4)− λS(e4, e4) = −(λ− b),
−(∆gλ)g(e5, e5) + g(∇e5Dλ, e5)− λS(e5, e5) = λ.

From the last five expressions, we conclude that there does not exist any solu-
tion of the Miao-Tam equation on the given manifold and this verifies Theorem
3.2.

Acknowledgement. The author is thankful to the referee and the Editor for
their valuable suggestions towards the improvement of the paper.
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