DOI QR코드

DOI QR Code

COMMUTATIVITY CRITERIA OF PRIME RINGS INVOLVING TWO ENDOMORPHISMS

  • Dakir, Souad (Department of Mathematics Faculty of Science University Moulay Ismail Meknes) ;
  • Mamouni, Abdellah (Department of Mathematics Faculty of Science University Moulay Ismail Meknes) ;
  • Tamekkante, Mohammed (Department of Mathematics Faculty of Science University Moulay Ismail Meknes)
  • Received : 2021.07.08
  • Accepted : 2021.11.16
  • Published : 2022.07.31

Abstract

This paper treats the commutativity of prime rings with involution over which elements satisfy some specific identities involving endomorphisms. The obtained results cover some well-known results. We show, by given examples, that the imposed hypotheses are necessary.

Keywords

References

  1. M. Bresar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), no. 2, 385-394. https://doi.org/10.1006/jabr.1993.1080
  2. M. Bresar, W. S. Martindale, III, and C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra 161 (1993), no. 2, 342-357. https://doi.org/10.1006/jabr.1993.1223
  3. Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings, Comm. Algebra 23 (1995), no. 10, 3705-3713. https://doi.org/10.1080/00927879508825427
  4. A. Mamouni, L. Oukhtite, and B. Nejjar, On *-semiderivations and *-generalized semiderivations, J. Algebra Appl. 16 (2017), no. 4, 1750075, 8 pp. https://doi.org/10.1142/S021949881750075X
  5. J. H. Mayne, Centralizing automorphisms of prime rings, Canad. Math. Bull. 19 (1976), no. 1, 113-115. https://doi.org/10.4153/CMB-1976-017-1
  6. H. El Mir, A. Mamouni, and L. Oukhtite, Special mappings with central values on prime rings, Algebra Colloq. 27 (2020), no. 3, 405-414. https://doi.org/10.1142/S1005386720000334
  7. B. Nejjar, A. Kacha, A. Mamouni, and L. Oukhtite, Commutativity theorems in rings with involution, Comm. Algebra 45 (2017), no. 2, 698-708. https://doi.org/10.1080/00927872.2016.1172629
  8. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686