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A CHARACTERIZATION OF FINITE FACTORIZATION
POSITIVE MONOIDS

HaroLD PoLO

ABSTRACT. We provide a characterization of the positive monoids (i.e.,
additive submonoids of the nonnegative real numbers) that satisfy the fi-
nite factorization property. As a result, we establish that positive monoids
with well-ordered generating sets satisfy the finite factorization property,
while positive monoids with co-well-ordered generating sets satisfy this
property if and only if they satisfy the bounded factorization property.

1. Introduction

During their study of factorizations in integral domains, Anderson, Ander-
son, and Zafrullah [1] introduced the notion of finite factorization domains (or
FFDs), which are domains in which every nonzero element has finitely many
non-associated divisors; alternatively, it is said that these domains satisfy the
finite factorization property. The class of FFDs encompasses, most signifi-
cantly, Krull domains, and FFDs have been extensively investigated (see, for
instance, [2,14]). As it was pointed out by Halter-Koch [17], it is possible to
study factorizations in the more general context of cancellative and commuta-
tive monoids, and many of the factorization properties introduced for integral
domains have a monoid analog. In particular, a monoid M is called a finite
factorization monoid (or an FFM) provided that every nonzero element of M
has finitely many non-associated divisors.

Positive monoids, that is, additive submonoids of R>¢, have played an im-
portant role in factorization theory. For example, Grams [16] used Puiseux
monoids (i.e., additive submonoids of Qx) to refute Cohn’s assertion ([7,
Proposition 1.1]) that every atomic integral domain satisfies the ascending
chain condition on principal ideals. More recently, Bras-Amords [4] highlighted
connections between positive monoids and music theory, while Coykendall and
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Gotti [9] employed Puiseux monoids to tackle a question posed by Gilmer al-
most four decades ago in [13, page 189]. The aim of the present article is to
study the positive monoids that satisfy the finite factorization property. These
monoids have been studied before; while Gotti [14] showed that increasing
positive monoids are FFMs, Baeth et al. [3] investigated the dyadic notion of
bi-FFSs in the context of positive semirings (i.e., positive monoids that are
closed under multiplication and contain the multiplicative identity). On the
other hand, Correa-Morris and Gotti [8] proved that the finite factorization
property and the bounded factorization property coincide for positive semir-
ings generated (as a monoid) by the nonnegative powers of a single element.

This paper is structured as follows. We begin next section by introducing
not only the necessary background but also the notation we shall be using
throughout this manuscript. Then, in Section 3, we provide a characterization
of finite factorization positive monoids. As a result, we establish that posi-
tive monoids with well-ordered generating sets satisfy the finite factorization
property, while positive monoids with co-well-ordered generating sets satisfy
this property if and only if they satisfy the bounded factorization property.
We conclude by showing, in Section 4, that for certain positive semirings, the
additive structure completely determines whether the multiplicative structure
satisfies the finite factorization property.

2. Background

We now review some of the standard concepts we shall be using later. The
monograph [12] by Geroldinger and Halter-Koch offers extensive background
on non-unique factorization theory.

2.1. Notation

Let N denote the set of nonnegative integers, and let P denote the set of
prime numbers. If X is a subset of the real numbers, then we set

Xop={zeX|0<z<r}

we define X<,, X5,, and X>, in a similar way. Additionally, a subset X
of Rxg is called well-ordered * provided that X contains no infinite decreasing
sequence; if X contains no infinite increasing sequence, then it is called co-well-
ordered. For a positive rational number ¢ = n/d with n and d relatively prime
positive integers, we call n the numerator and d the denominator of ¢, and we
set n(q) := n and d(q) := d. For nonnegative integers k and m, we denote by
[k, m] the set of integers between k and m, i.e., [k,m] = {s € N |k < s<m}.

1UsuaHy, a subset X C R>( is called well-ordered provided that every nonempty subset
of X has a minimal element, but assuming the Axiom of Choice this is equivalent to our
definition.
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2.2. Commutative monoids

Throughout this paper, a monoid is defined to be a semigroup with identity
that is cancellative, commutative, and reduced (i.e., its only invertible element
is the identity), and we use additive notation for monoids. Let M be a monoid.
We denote by A(M) the set consisting of elements a € M*® := M\ {0} satisfying
that if a = x +y for some z,y € M, then either x = 0 or y = 0; the elements of
this set are called atoms. For a subset S C M, we denote by (S) the smallest
submonoid of M containing S, and if M = (S), then it is said that S is a
generating set of M. A monoid M is atomic if M = (A(M)). For z,y € M,
it is said that x divides y if there exists 2’ € M such that y = = + 2’ in
which case we write z |5 y and drop the subscript whenever M = (N°®, x). We
denote by Dps(x) the set of nonzero divisors of an element = in M, and set
Ay (z) == Dy (z) N A(M); we omit subscripts whenever the monoid is clear
from the context. A subset I of M is an ideal of M provided that I + M C I.
An ideal I is principal if I = x 4+ M for some x € M. Furthermore, it is said
that M satisfies the ascending chain condition on principal ideals (or ACCP)
if every increasing sequence of principal ideals of M eventually stabilizes. If M
satisfies the ACCP, then it is atomic ([12, Proposition 1.1.4]).

Following [3], we call additive submonoids of Rx¢ positive monoids; if they
are submonoids of Q>¢, then we call them Puiseuzr monoids. Since Puiseux
monoids are the torsion-free rank-1 monoids that are not groups ([11, Theo-
rem 3.12]), they are, up to isomorphism, the positive monoids of rank 1. The
atomic structure of Puiseux monoids is convoluted and has received consider-
able attention lately (see [6] and references therein). The most investigated
subclass of Puiseux monoids is that one comprising all numerical monoids, i.e.,
additive submonoids of N whose complement (in N) is finite. An introduction
to numerical monoids can be found in [20].

2.3. Factorizations

For the rest of the section, let M be an atomic monoid. The factorization
monoid of M, denoted by Z(M), is the free (commutative) monoid on A(M).
The elements of Z(M) are called factorizations, and if z = a1 +---+a, € Z(M)
for ay,...,a, € A(M), then it is said that the length of z, denoted by |z|, is
n. We assume that the empty factorization has length 0. The unique monoid
homomorphism 7: Z(M) — M satisfying that m(a) = a for all a € A(M) is
called the factorization homomorphism of M. For each x € M, there are two
important sets associated to z:

Zy(x) i=n"Y(2) CZ(M) and Ly (x):={|z|: 2 € Zp ()},

which are called the set of factorizations of x and the set of lengths of x,
respectively; as usual we drop the subscript whenever the monoid is clear from
the context. Additionally, the collection £L(M) = {L(x) | x € M} is called the
system of sets of lengths of M. See [10] for a survey on sets of lengths and the
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role they play in factorization theory. It is said that M is a finite factorization
monoid (or an FFM) if Z(x) is nonempty and finite for all z € M. Similarly, it
is said that M is a bounded factorization monoid (or BEM) if L(z) is nonempty
and finite for all x € M. Clearly, an FFM is also a BFM, while a BFM satisfies
the ACCP by [12, Corollary 1.3.3].

3. Positive monoids

In this section, we provide a characterization of the positive monoids that
satisfy the finite factorization property. As a result, we obtain not only that
positive monoids with well-ordered generating sets are FFMs, but also that
positive monoids with co-well-ordered generating sets are FFMs if and only if
they are BFMs. But first we need to collect a lemma, which is a generalization
of [6, Theorem 4.7].

Lemma 3.1. Let P be a positive monoid. Then P is a BFM provided that
inf D(x) > 0 for every x € P*.

Proof. Take an arbitrary element x € P®. There exists ¢ € Ry such that
e < inf D(x). Clearly, the element x can be written as the sum of at most
[z/¢] elements of P*. Now let x = a; + -+ + a,, where a1,...,a, € P*, and
assume without loss of generality that n is maximal. Then it is not hard to see
that a; € A(P) for each i € [1,n]. Since x was arbitrarily taken, the monoid
P is atomic. Moreover, for each x € P, we have that |z| < [x/e] for every
z € Z(x). Therefore, P is a BEM. O

Corollary 3.2 ([6, Theorem 4.7]). Let P be a positive monoid. If 0 is not a
limit point of P® then P is a BFM.

Proof. Since 0 is not a limit point of P*®, we have that the inequality inf D(z) >
0 holds for every = € P*®, and the result follows from Lemma 3.1. (]

Now we are in a position to prove the main result of this section.

Theorem 3.3. Let P be a positive monoid. Then P is an FFM if and only if
there is no x € P such that x is a limit point of D(2x).

Proof. If there exists © € P such that z is a limit point of D(2z), then the
element 2z € P has infinitely many (non-associated) divisors in P, and the
direct implication follows from [12, Proposition 1.5.5].

To tackle the reverse implication, we first prove that P is a BFM. Suppose,
towards a contradiction, that there exists x € P*® such that 0 is a limit point of
D(z). Then there exists a strictly decreasing sequence (dy,)nen of elements of
D(z) converging to 0, which implies that {z — d,,z+d,,} C P for every n € N.
Consequently, z is a limit point of D(2x). This contradiction proves that our
hypothesis is untenable. So for every x € P we have that inf D(x) > 0 which,
in turn, implies that P is a BFM by Lemma 3.1.
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Now assume that P is not an FFM. By [12, Proposition 1.5.5], there exists
2 € P* such that the set A(z) has infinite cardinality. Since L(x) is finite, there
exists | € L(z) such that the set Z = {z € Z(x) : |z| = I} has infinite cardinality
too. Let us denote by A, the set consisting of the atoms of P that show up in,
at least, one factorization in Z. Clearly, we have |A.| = co. Next we describe
a procedure to obtain a sequence of factorizations (z, = al +---+ afl)neN such
that 2, € Z for each n € N and, for each i € [1,[], the sequence (af,),en is
constant, strictly increasing, or strictly decreasing. For each i € [1,1], let us
denote by A; the set formed by the ith smallest atoms of the factorizations
in Z. Since |A,| = oo, there exists j € [1,1] such that |A;] = co. There is
no loss in assuming that j is minimal. Since A; is an infinite bounded subset
of the nonnegative real numbers, it contains a sequence that is either strictly
increasing or strictly decreasing. Consequently, there exists a sequence (S7) of
elements of Z such that the sequence induced by (S1) in A; is either strictly
increasing or strictly decreasing. Since |4;| < oo for each i € [1,5 — 1], there
is no loss in assuming that the sequence induced by (S7) in A; is constant
for each ¢ € [1,57 — 1]. More generally, if ¢ € [1,I] and |A;| < oo, then we
may assume that the sequence induced by (S7) in A; is constant. For each
i € [1,1], let us denote by (A;)! the sequence induced by (S1) in A;. Assume
that we already defined, for some j € N°®, a sequence (S;) of elements of
Z. 1If each sequence (A;)? (with i € [1,1]) is constant, strictly increasing,
or strictly decreasing, then our procedure stops. Otherwise, there exists k €
[1,1] such that the sequence (Ay)? has infinitely many distinct elements and is
neither strictly increasing nor strictly decreasing. Once again, assume that k is
minimal. Clearly, the inequality j < k holds. Since the underlying set of (Ay)?
is infinite and bounded, there exists an infinite subsequence (S;41) of (S;)
such that the sequence induced by (Sj11) in (Ag)” is either strictly increasing
or strictly decreasing. For each i € [1,1], let (A4;)7*! be the sequence induced
by (S;+1) in (A4;)7. Since (Sj11) is a subsequence of (S;), we have that (A4;)7+!
is a subsequence of (A;)? for each i € [1,1]. By induction, it follows that there
exists a sequence of factorizations o0 = (2, = al +---+a', ) en such that 2, € Z
for each n € N and, for each i € [1,], the sequence (a’,)nen is constant, strictly
increasing, or strictly decreasing.

We already established that there exists j € [1,[] such that the sequence
(a? )nen is either strictly increasing or strictly decreasing. Furthermore, there is
no loss in assuming that none of the sequences (a’,),en is constant; otherwise,
we can just take the subfactorizations of the elements of o that do not include
these atoms. As a consequence, there exist k,r € [1,1] such that (ak),ecy is
strictly increasing and (al,),en is strictly decreasing. Indeed, if for example all
sequences (a’)),en are strictly increasing, then there exist two factorizations
z,7" € Z(x) such that 7(z) > w(2’), which is impossible. Suppose, without loss
of generality, that there exists ¢ € 1,1 — 1] such that the sequence (a?,)nen
is strictly increasing for every i € [1,¢], while the sequence (a?)),en is strictly
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decreasing for each j € [t + 1,1]. For each i € [1,1], set I; == lim,, oo a’,. Let

e € Ryg such that ¢ < z. Now fix N € N such that |l; — a’y| < ¢/l for every
1 € [1,1]. As the reader can easily verify, the following equalities hold

¢ ! ¢
_ i § i i
= E an41 T+ E ay — E (any1 — ay)
im1 i=1

i—tt1
¢ ! !
_ i i i i
= E ay + E an4q + E (ay — ai1)-
i=1 i=t+1 i=t+1

Let 6 = 22:1(%\7“ —aly), and note that 0 < § < e. Since Y'_, (al,,; —a},) =
Zi’:t+1 (al,—a’ ) for each n € N, we have that z—§ and 246 are both elements

of P. Hence z is a limit point of D(2z), from which our result follows. O

Corollary 3.4. Let P be a positive monoid with a well-ordered generating set.
Then P is an FFM.

Proof. Since P has a well-ordered generating set, the set P is also well-ordered
by [18, Theorem 3.4] and, consequently, there is no x € P such that x is a limit
point of D(2z). O

Remark 3.5. The definition of well-ordered sets used by Neumann [18] is dif-
ferent from ours. However, these two definitions are equivalent as the author
pointed out in [18, Lemma 3.1].

Remark 3.6. Notice that Corollary 3.4 is a generalization of [6, Theorem 4.19],
which states that increasing Puiseux monoids are FFMs. Also note that Corol-
lary 3.4 can be proved independently of Theorem 3.3. In fact, by Corollary 3.2,
if P is a positive monoid with a well-ordered generating set, then 0 is not a limit
point of P®, which implies that P is a BFM and, thus, atomic. If for some x € P
the set A(z) has infinite cardinality, then it is not hard to construct a strictly
decreasing sequence of elements of P, which contradicts [18, Theorem 3.4].

Corollary 3.7. Let P be a positive monoid with a co-well-ordered generating
set. Then P is an FFM if and only if P is a BFM.

Proof. The direct implication trivially follows. As for the remaining implica-
tion, suppose by way of contradiction that P is not an FFM. In the proof of
Theorem 3.3, we established that in this case A(P) contains at least one in-
creasing sequence. Since P is atomic (and reduced), we have that A(P) C S
for any generating set S of P. Consequently, no generating set of P is co-well-
ordered, a contradiction. [l

As the following example illustrates, not all positive monoids satisfying the
finite factorization property have either well-ordered or co-well-ordered gener-
ating sets. In particular, the converse of Corollary 3.4 does not hold.
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Example 3.8. For each n € N°, let p, denote the nth prime number, and
consider the Puiseux monoid M generated by the set

S = {3+1/p2n,3— 1/p2n+1 |n S N.}

It is easy to show that A(M) = S, which implies that M is atomic. Since 0 is
not a limit point of M*®, the monoid M is a BFM by Corollary 3.2. Furthermore,
M is an FFM. Indeed, for z € M and a € A(M), it is not hard to show
that if a |pr z, then either d(a)|d(z) or 3 -d(a)|a x, which implies that x has
finitely many divisors in M. However, A(M) is neither well-ordered nor co-
well-ordered.

Corollary 3.9. Let M = (S) be a Puiseuxr monoid satisfying that 0 is not a
limit point of M® and ged(d(s),d(s’)) =1 for s and s’ distinct elements of S.
Then M is an FFM.

Proof. By Corollary 3.2, the monoid M is a BFM. On the other hand, it is not
hard to check that A(M) = S. Suppose towards a contradiction that M is not
an FFM. As part of the proof of Theorem 3.3, we established that if M is a
positive BFM that is not an FFM, then for all € € Ry there exist increasing
sequences (a})nen, - - -, (aF)nen and decreasing sequences (bl )nens, - - -, (b )nen
of atoms of M such that 3¢ (a% ., —ai) = S0 (b% — biyy) < e for all
n € N. Assume, without loss of generality, that the underlying sets of the
sequences (al,)nen and (b)),en are disjoint for i € [1,k] and j € [1,¢]. From
this observation, it is not hard to show that our previous equation does not
hold for any e strictly less than 1, which is a contradiction. O

3.1. Submonoids of finite factorization positive monoids

It is well known that a submonoid of a reduced FFM is an FFM ([12, Corol-
lary 1.5.7]). However, the finite factorization property does not ascend from
a submonoid to the monoid (and the reader can easily verify this using Theo-
rem 3.3). Next we show that a positive monoid P satisfies the finite factoriza-
tion property if and only if certain submonoids of P satisfy it, but first let us
introduce a definition.

Definition 3.10. Given a subset S C Rx(, we denote by [(S) the set of limit
points of S contained in S.

Proposition 3.11. Let (S) be a positive monoid, and let A C S be closed in
R>o such that [(S) = [(S\ A). Then (S) is an FFM if and only if (S\ A) is
an FFM.

Proof. Set P := (S) and P’ := (S'\ A). To tackle the nontrivial implication,
assume by way of contradiction that P is not an FFM. By Theorem 3.3, there
exists € P such that for every n € N® there exists 0 < d,, < 1/n satisfying
that {z —d,,z+d,} C P. Since P’ is an FFM, the set B = {x —0,, 2+, |n €
N*} \ P’ has infinite cardinality; otherwise, the element 22 € P’ would have
infinitely many (non-associated) divisors. It is easy to see that each element of
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B is divisible in P by some element of A. Let us denote by A’ the set consisting
of the elements of A that divide some element in B. We claim that |A'| < co.
In fact, if A’ is an infinite subset of A, then there exists | € Rx¢ such that !
is a limit point of A’ by Bolzano-Weierstrass Theorem, which states that each
bounded sequence in R has a convergent subsequence. Since A is a closed subset
of R>¢, we have that [ € A, but this contradicts the equality [(S) = [(S\ A), and
our claim follows. Now let D = {z -6, |n € N*} and C = {x + d,, | n € N*}.
If the set DN P’ has infinitely many elements, then set a; := 0; otherwise, take
ay to be the maximal element of (A’) dividing (in P) infinitely many elements
of D. After replacing (0, )nen by a suitable subsequence (v, )nen, we have that
ap divides in P all elements of D and {z — a1 — a,, | n € N*} C P’. Similarly,
there is no loss in assuming that there exists as € R>g such that ag divides
in P all elements of C and {x — as + a, | n € N*} C P’. Consequently, the
element 2z — a; — as € P’ has infinitely many (non-associated) divisors in P’,
which contradicts [12, Proposition 1.5.5]. O

Following [15], we say that a sequence of real numbers is strongly increasing
if it increases to infinity.

Corollary 3.12. Let (S) be a positive monoid, and let A C S be the underlying
set of a strongly increasing sequence. Then (S) is an FFM if and only if (S\ A)
is an FEM.

The atomicity of rational multicyclic monoids, that is, additive submonoids
of the nonnegative rational numbers generated by multiple geometric sequences,
was briefly studied in [19]. Next we show that, in this context, the finite
factorization property only depends on the generators with values strictly less
than 1.

Corollary 3.13. Let B be a finite subset of Rsq, and set Mp = (b" | b €
B, n € N). Then the following statements hold.
(1) If B =Bn(0,1) then Mg is an FFM if and only if Mp: is an FFM.
(2) If b > 1 for each b € B then Mp is an FFM.

Proof. Tt immediately follows from Corollary 3.12. O

4. Positive semirings with finitely many bi-atoms

Positive semirings, that is, positive monoids that are closed under multi-
plication and contain the multiplicative identity, have received considerable
attention lately. For example, in [8] the authors studied the atomic properties
of the additive structure of positive algebraic valuations of N[X], the semiring
of polynomials with nonnegative coefficients, while some of the factorization in-
variants of N[7], where 7 is a quadratic integer, were investigated in [5]. Most
relevant to the work on this section, Baeth et al. [3] investigated the dualistic
nature of the finite factorization property in the context of positive semirings.
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Definition 4.1. Following [3], we say that a positive semiring (S, +,-) is a
bi-FFS if both (S,+) and (S°®,-) are FFMs. In a similar manner, we use the
terminologies bi-BFS, bi-ACCP, bi-atomic, and bi-reduced. Additionally, we
say that an element a € S is a bi-atom if it is an atom of (S, +) and (S°, ).

Studying the finite factorization property in the context of all positive semir-
ings is beyong the scope of this paper. Here we only consider positive semirings
that are bi-atomic and bi-reduced, and contain finitely many bi-atoms. We re-
strict ourselves to this subclass because, as we now show, in this case we can
ignore the multiplicative structure.

Definition 4.2. Given a bi-atomic positive semiring (S, +,-), we denote by
AL (S) and Ay (S®) the set of atoms of (S, +) and (S°,-), respectively.

Proposition 4.3. Let S be a bi-atomic and bi-reduced positive semiring satisfy-
ing that | AL (S)NAL(S®)| < co. Then the following statements are equivalent.

(1) (S,+,) is a bi-FFS.
(2) (S,+) is an FFM.
(3) There is no x € S such that x is a limit point of D(g 1)(2).

Proof. By Theorem 3.3, the statements (2) and (3) are equivalent. On the
other hand, proving that (1) and (2) are equivalent reduces to show that (2)
implies (1). Assume towards a contradiction that (S°,-) is not an FFM. Then
there exists so € S such that [Z(ge .y(s0)| = oo. Since the inequality [A(S) N
A (S®)] < 0o holds, the set A = {a € Ax(S®) \ AL(S) : alss,.ys0} has
infinite cardinality. Clearly, for each a € A there exist z,,y, € S® such that
a = x4 + Yy, which, in turn, implies that for each a € A there exists k, € S*®
such that sg = ks + kqya. Since (S,+) is a reduced positive FFM, there
exists an infinite subset A’ of A satisfying that k,x, = kyxp for all a,b € A’;
otherwise, the element sy would have infinitely many additive (non-associated)
divisors in (S, +), which is a contradiction. Consequently, we also have that the
equality kq,y, = kpyp holds for all a,b € A’. Since A’ has infinite cardinality,
either {z, | a € A’} or {y, | a € A’} has infinite cardinality. Without loss of
generality, assume that {z, | a € A’} has infinite cardinality, and fix a € A’.
Then set 51 := kqzq € S®. By [12, Proposition 1.5.5], we have |Z (g .y(s1)| = 00
Evidently, we can recursively apply this idea to generate an infinite sequence
50,51, ... of elements of S® such that s;i;|(g4)s; for each i € N. But this
contradicts that (S, +) satisfies the ACCP, and our argument concludes. [

Corollary 4.4. Let v € Ry such that N[r] is bi-atomic. Then the following
statements are equivalent.

(1) (N[r],+) is an FFM.

(2) (N[r],+) is a BFM.

(3) (N[r],+) satisfies the ACCP.
(4) (N[r],+,-) is a bi-FFS.
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(5) (N[r],+,-) is a bi-BFS.
(6) (N[r],+,-) satisfies the bi-ACCP.

Proof. By [3, Proposition 3.2], the semiring N[r] is bi-reduced. Moreover, it is
easy to see that A4 (N[r]) N Ay (N[r]*) = {r}. The first four statements are
equivalent by [8, Theorem 4.11] and Proposition 4.3. Note that, starting at
(4), each statement implies the next one and, clearly, (6) implies (3). O

Not all bi-atomic and bi-reduced positive semirings containing finitely many
bi-atoms are bi-FFSs. Consider the following example.

Example 4.5. Let ¢ € Q1 such that n(q) > 1 and d(¢) € P, and consider
the positive semiring N[g]. By [3, Proposition 4.3], N[g| is bi-atomic but does
not satisfy the bi-ACCP, so in particular it is not a bi-FFS. Note that N[q] is
bi-reduced by virtue of [3, Proposition 3.2].

Unfortunately, Proposition 4.3 cannot be extended to the more general class
of bi-atomic and bi-reduced positive semirings as the following example (which
is a construction introduced in [3]) illustrates.

Example 4.6. Let P be an infinite subset of P, and let M = (1/p | p € P). Let
us consider the positive semiring E(M) := (¢™ | m € M). The additive monoid
E(M) is free on the set {e™ | m € M} by Lindemann-Weierstrass Theorem
stating that, for distinct algebraic numbers a;, . .., a,, the set {e**,... e*}is
linearly independent over the algebraic numbers. So, in particular, (E(M),+)
is an FFM. Since E(M) N (0,1) = (), the semiring F(M) is bi-reduced and, by
[3, Proposition 4.1], bi-atomic. However, (F(M)®,-) is not an FFM. Indeed,
the multiplicative submonoid {e™ | m € M} is isomorphic to M, which is
obviously not an FFM. Therefore, E(M) is not a bi-FFS.
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