Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A101444313).
References
- Abdel-Fattah, A.F., Abdel-Naby, M.A. 2012. Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydrate Polymers 87(3): 2109-2113. https://doi.org/10.1016/j.carbpol.2011.10.033
- Abdullah, A.R., Hapidin, H., Abdullah, H. 2017. Phytochemical analysis of Quercus infectoria galls extracts using FTIR, LC-MS and MS/MS analysis. Research Journal of Biotechnology 12(12): 55-61.
- Borgin, K. 1971. The mechanism of the breakdown of the structure of wood due to environmental factors. Journal of the Institute of Wood Science 5(4): 26-30.
- Chang, T.C., Chang, H.T., Wu, C.L., Chang, S.T. 2010. Influences of extractives on the photodegradation of wood. Polymer Degradation and Stability 95(4): 516-521. https://doi.org/10.1016/j.polymdegradstab.2009.12.024
- Chen, C., Kuang, Y., Zhu, S., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L. 2020. Structure-property-function relationships of natural and engineered wood. Nature Reviews Materials 5(9): 642-666. https://doi.org/10.1038/s41578-020-0195-z
- Chen, R., Pignatello, J.J. 1997. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environmental Science & Technology 31(8): 2399-2406. https://doi.org/10.1021/es9610646
- Cogulet, A., Blanchet, P., Landry, V. 2016. Wood degradation under UV irradiation: A lignin characterization. Journal of Photochemistry and Photobiology B: Biology 158: 184-191. https://doi.org/10.1016/j.jphotobiol.2016.02.030
- Evans, P.D., Schmalzl, K.J. 1989. A quantitative weathering study of wood surfaces modified by chromium VI and iron III compounds. Part 1. Loss in zero-span tensile strength and weight of thin wood veneers. Holzforschung 43(5): 289-292. https://doi.org/10.1515/hfsg.1989.43.5.289
- Fan, Y., Gao, J., Chen, Y. 2009. Colour responses of black locust (Robinia pseudoacacia L.) to solvent extraction and heat treatment. Wood Science and Technology 44(4): 667-678. https://doi.org/10.1007/s00226-009-0289-7
- Fujimoto, Y., Tanaka, H., Morita, H., Kang, S.G. 2021. Development of ply-lam composed of Japanese cypress laminae and Korean larch plywood. Journal of the Korean Wood Science and Technology 49(1): 57-66. https://doi.org/10.5658/WOOD.2021.49.1.57
- Gonultas, O., Candan, Z. 2018. Chemical characterization and FTIR spectroscopy of thermally compressed eucalyptus wood panels. Maderas. Ciencia y Tecnologia 20(3): 431-442.
- Guo, H., Fuchs, P., Cabane, E., Michen, B., Hagendorfer, H., Romanyuk, Y.E., Burgert, I. 2016. UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures. Holzforschung 70(8): 699-708. https://doi.org/10.1515/hf-2015-0185
- Hadi, Y.S., Herliyana, E.N., Pari, G., Pari, R., Abdillah, I.B. 2022. Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Journal of the Korean Wood Science and Technology 50(1): 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
- Hermansyah, H., Putri, D.N., Prasetyanto, A., Bintang, Z., Chairuddin, M.S.P., Sahlan, M., Yohda, M. 2019. Delignification of oil palm empty fruit bunch using peracetic acid and alkaline peroxide combined with the ultrasound. International Journal of Technology 10(8): 1523-1532. https://doi.org/10.14716/ijtech.v10i8.3464
- Jang, S.S., Lee, H.W. 2019. Lateral resistance of CLT wall panels composed of square timber larch core and plywood cross bands. Journal of the Korean Wood Science and Technology 47(5): 547-556. https://doi.org/10.5658/wood.2019.47.5.547
- Kang, C., Lee, N. 2005. Changes of sound absorption capability and anatomical features of wood by delignification treatment. Journal of the Korean Wood Science and Technology 33(4): 9-14.
- Kang, C.W., Jang, S.S., Kang, H.Y., Li, C. 2019. Sound absorption rate and sound transmission loss of CLT wall panels composed of larch square timber core and plywood cross band. Journal of the Korean Wood Science and Technology 47(1): 33-39. https://doi.org/10.5658/WOOD.2019.47.1.33
- Kang, J.W., Doo, Y.S., Jeong, M.J., Kang, K.Y. 2015. The quantitative analysis of solutes from the peracetic acid pretreatment of wood chips. In: Daegu, Korea, Proceedings of Korea Technical Association of the Pulp and Paper Industry, pp. 102-103.
- Kataoka, Y. 2008. Photodegradation of wood and depth profile analysis. Mokuzai Gakkai-Shi 54(4): 165-173. https://doi.org/10.2488/jwrs.54.165
- Khanjanzadeh, H., Park, B.D. 2020. Characterization of carboxylated cellulose nanocrystals from recycled fiberboard fibers using ammonium persulfate oxidation. Journal of the Korean Wood Science and Technology 48(2): 231-244. https://doi.org/10.5658/WOOD.2020.48.2.231
- Kim, G.C., Kim, J.H. 2020. Changes in mechanical properties of wood due to 1 year outdoor exposure. Journal of the Korean Wood Science and Technology 48(1): 12-21. https://doi.org/10.5658/WOOD.2020.48.1.12
- Kubovsky, I., Kacikova, D., Kacik, F. 2020. Structural changes of oak wood main components caused by thermal modification. Polymers 12(2): 485. https://doi.org/10.3390/polym12020485
- Kuo, M., Hu, N. 1991. Ultrastructural changes of photodegradation of wood surfaces exposed to UV. Holzforschung 45(5): 347-353. https://doi.org/10.1515/hfsg.1991.45.5.347
- Kwon, S.M., Jang, J.H., Lee, S.H., Park, S.B., Kim, N.H. 2013. Change of heating value, pH and FT-IR spectra of charcoal at different carbonization temperatures. Journal of the Korean Wood Science and Technology 41(5): 440-446. https://doi.org/10.5658/WOOD.2013.41.5.440
- Lee, H.W., Jeong, H., Ju, Y.M., Youe, W.J., Lee, J., Lee, S.M. 2019a. Pyrolysis properties of lignins extracted from different biorefinery processes. Journal of the Korean Wood Science and Technology 47(4): 486-497. https://doi.org/10.5658/WOOD.2019.47.4.486
- Lee, I.H., Song, Y.J., Song, D.B., Hong, S.I. 2019b. Results of delamination tests of FRPand steel-plate-reinforced larix composite timber. Journal of the Korean Wood Science and Technology 47(5): 655-662. https://doi.org/10.5658/wood.2019.47.5.655
- Li, J., Chen, C., Zhu, J.Y., Ragauskas, A.J., & Hu, L. (2021). In situ wood delignification toward sustainable applications. Accounts of Materials Research 2(8): 606-620. https://doi.org/10.1021/accountsmr.1c00075
- Liu, R., Zhu, H., Li, K., Yang, Z. 2019. Comparison on the aging of woods exposed to natural sunlight and artificial xenon light. Polymers 11(4): 709. https://doi.org/10.3390/polym11040709
- Liu, X.Y., Timar, M.C., Varodi, A.M., Sawyer, G. 2016. An investigation of accelerated temperature-induced ageing of four wood species: Colour and FTIR. Wood Science and Technology 51(2): 357-378.
- Lozhechnikova, A., Bellanger, H., Michen, B., Burgert, I., Osterberg, M. 2017. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Applied Surface Science 396: 1273-1281. https://doi.org/10.1016/j.apsusc.2016.11.132
- Ma, R., Guo, M., Lin, K., Hebert, V.R., Zhang, J., Wolcott, M.P., Zhang, X., Quintero, M., Ramasamy, K.K., Chen, X., Zhang, X. 2016. Peracetic acid depolymerization of biorefinery lignin for production of selective monomeric phenolic compounds. Chemistry: A European Journal 22(31): 10884-10891. https://doi.org/10.1002/chem.201600546
- Miranda, I., Gominho, J., Pereira, H. 2012. Cellular structure and chemical composition of cork from the Chinese cork oak (Quercus variabilis). Journal of Wood Science 59(1): 1-9. https://doi.org/10.1007/s10086-012-1300-8
- More, A., Elder, T., Jiang, Z. 2021. A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung 75(9): 806-823. https://doi.org/10.1515/hf-2020-0165
- Oberhofnerova, E., Panek, M., Garcia-Cimarras, A. 2017. The effect of natural weathering on untreated wood surface. Maderas. Ciencia y Tecnologia 19(2): 173-184.
- Owen, J.A., Owen, N.L., Feist, W.C. 1993. Scanning electron microscope and infrared studies of weathering in southern pine. Journal of Molecular Structure 300(1993): 105-114. https://doi.org/10.1016/0022-2860(93)87010-7
- Pan, G.X., Spencer, L., Leary, G.J. 2000. A comparative study on reactions of hydrogen peroxide and peracetic acid with lignin chromophores. Part 2. The reaction of stilbene-type model compounds. Holzforschung 54(2): 153-158. https://doi.org/10.1515/HF.2000.026
- Pandey, K.K. 2005. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability 87(2): 375-379. https://doi.org/10.1016/j.polymdegradstab.2004.09.007
- Pandey, K.K., Vuorinen, T. 2008. Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polymer Degradation and Stability 93(12): 2138-2146. https://doi.org/10.1016/j.polymdegradstab.2008.08.013
- Panek, M., Oberhofnerova, E., Zeidler, A., Sedivka, P. 2017. Efficacy of hydrophobic coatings in protecting oak wood surfaces during accelerated weathering. Coatings 7(10): 172. https://doi.org/10.3390/coatings7100172
- Park, S.Y., Cho, S.M., Kim, J.C., Hong, C., Kim, S.H., Ryu, G.H., Choi, I.G. 2019. Effects of peracetic acid and hydrogen peroxide concentration on kraft lignin degradation at room temperature. BioResources 14(2): 4413-4429. https://doi.org/10.15376/biores.14.2.4413-4429
- Park, S.Y., Choi, J.H., Cho, S.M., Choi, J.W., Choi, I.G. 2020b. Structural analysis of open-column fractionation of peracetic acid-treated kraft lignin. Journal of the Korean Wood Science and Technology 48(6): 769-779. https://doi.org/10.5658/WOOD.2020.48.6.769
- Park, S.Y., Choi, J.H., Kim, J.H., Cho, S.M., Yeon, S., Jeong, H., Lee, S.M., Choi, I.G. 2020a. Peracetic acid-induced kraft lignin solubilization and its characterization for selective production of macromolecular biopolymers. International Journal of Biological Macromolecules 161: 1240-1246. https://doi.org/10.1016/j.ijbiomac.2020.06.041
- Park, S.Y., Hong, C.Y., Kim, S.H., Choi, J.H., Kwon, O., Lee, H.J., Choi, I.G. 2018a. Photodegradation of natural wood veneer and studies on its color stabilization for automotive interior materials. Journal of Wood Chemistry and Technology 38(4): 301-312. https://doi.org/10.1080/02773813.2018.1488872
- Park, S.Y., Hong, C.Y., Kim, S.H., Choi, J.H., Lee, H.J., Choi, I.G. 2018b. Studies on photoprotection of walnut veneer exposed to UV light. Journal of the Korean Wood Science and Technology 46(3): 221-230. https://doi.org/10.5658/WOOD.2018.46.3.221
- Plackett, D.V., Dunningham, E.A., Singh, A.P. 1992. Weathering of chemically modified wood. Holz als Roh-und Werkstoff 50: 135-140. https://doi.org/10.1007/BF02663254
- Rosu, D., Teaca, C.A., Bodirlau, R., & Rosu, L. (2010). FTIR and color change of the modified wood as a result of artificial light irradiation. Journal of Photochemistry and Photobiology B: Biology, 99(3): 144-149. https://doi.org/10.1016/j.jphotobiol.2010.03.010
- Scheck, C.K., Frimmel, F.H. 1995. Degradation of phenol and salicylic acid by ultraviolet radiation/hydrogen peroxide/oxygen. Water Research 29(10): 2346-2352. https://doi.org/10.1016/0043-1354(95)00060-X
- Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy 36(1): 23-40. https://doi.org/10.1016/j.vibspec.2004.02.003
- Timar, M.C., Varodi, A.M., Gurau, L. 2016. Comparative study of photodegradation of six wood species after short-time UV exposure. Wood Science and Technology 50(1): 135-163. https://doi.org/10.1007/s00226-015-0771-3
- Tshabalala, M.A., Gangstad, J.E. 2003. Accelerated weathering of wood surfaces coated with multifunctional alkoxysilanes by sol-gel deposition. Journal of Coatings Technology 75(943): 37-43. https://doi.org/10.1007/bf02730098
- Vasileva, E., Li, Y., Sychugov, I., Mensi, M., Berglund, L., Popov, S. 2017. Lasing from organic dye molecules embedded in transparent wood. Advanced Optical Materials 5(10): 1700057. https://doi.org/10.1002/adom.201700057
- Vaughn, S.F., Kenar, J.A., Tisserat, B., Jackson, M.A., Joshee, N., Vaidya, B.N., Peterson, S.C. 2017. Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications. Industrial Crops and Products 97: 260-267. https://doi.org/10.1016/j.indcrop.2016.12.017
- Westin, P.O., Yang, X., Svedberg, A., Grundberg, H., Berglund, L.A. 2021. Single step PAA delignification of wood chips for high-performance holocellulose fibers. Cellulose 28(3): 1873-1880. https://doi.org/10.1007/s10570-020-03625-5
- Xing, D., Li, J. 2014. Effects of heat treatment on thermal decomposition and combustion performance of Larix spp. wood. BioResources 9(3): 4274-4287.
- Xing, D., Li, J., Wang, S. 2020. Comparison of the chemical and micromechanical properties of Larix spp. after eco-friendly heat treatments measured by in situ nanoindentation. Scientific Reports 10(1): 4358. https://doi.org/10.1038/s41598-020-61314-6
- Yamamoto, A., Rohumaa, A., Hughes, M., Vuorinen, T., Rautkari, L. 2017. Surface modification of birch veneer by peroxide bleaching. Wood Science and Technology 51(1): 85-95. https://doi.org/10.1007/s00226-016-0880-7
- Yang, I., Jeong, H., Lee, J.J., Lee, S.M. 2019. Relationship between lignin content and the durability of wood pellets fabricated using Larix kaempferi C. Sawdust. Journal of the Korean Wood Science and Technology 47(1): 110-123. https://doi.org/10.5658/WOOD.2019.47.1.110
- Yin, X., Huang, A., Zhang, S., Liu, R., Ma, F. 2018. Identification of three Dalbergia species based on differences in extractive components. Molecules 23(9): 2163. https://doi.org/10.3390/molecules23092163
- Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298. https://doi.org/10.5658/WOOD.2021.49.4.287
- Zhang, Y., Yang, L., Wang, D., Li, D. 2018. Structure elucidation and properties of different lignins isolated from acorn shell of Quercus variabilis Bl. International Journal of Biological Macromolecules 107: 1193-1202. https://doi.org/10.1016/j.ijbiomac.2017.09.099
- Zhao, Q., Nakashima, J., Chen, F., Yin, Y., Fu, C., Yun, J., Shao, H., Wang, X., Wang, Z.Y., Dixon, R.A. 2013. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. The Plant Cell 25(10): 3976-3987. https://doi.org/10.1105/tpc.113.117770