DOI QR코드

DOI QR Code

Peracetic Acid Treatment as an Effective Method to Protect Wood Discoloration by UV Light

  • PARK, Kyoung-Chan (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • KIM, Byeongho (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • PARK, Hanna (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • PARK, Se-Yeong (Department of Forest Biomaterials Engineering, Kangwon National University)
  • 투고 : 2022.07.01
  • 심사 : 2022.07.18
  • 발행 : 2022.07.25

초록

Wood has always been used for various day-to-day applications such as interior or exterior construction materials, and household products. However, it can undergo photodegradation and discoloration by environmental factors including ultraviolet (UV) light, and thus has shortened its service life. Bleaching or delignification of wood surfaces is a suitable solution to stabilize wood against weathering by UV because these techniques can alter or remove the chromophores in lignin, which is a main factor of wood discoloration. To improve the color stability of wood surface according to the lifespan, surface delignification was conducted using peracetic acid (PAA) and hydrogen peroxide (HP) on the woods of Larix kaempferi and Quercus mongolica. After the PAA treatment, L* increased considerably from 60-70 to 90-95. Furthermore, wood surface color did not change significantly after UV exposure. The color differences (𝜟E*) between before and after PPA treatment of wood showed the 4.8-12.2 of L. kaempferi, and 1.7-3.7 of Q. mongolica, respectively. The lignin-related peaks in Fourier transform infrared spectroscopy (FT-IR) spectra disappeared with increased duration of PAA treatment. These results confirmed that the lignin component was partially or completely removed after the PAA treatment; the color differences (𝜟E*) clearly showed that there was a reduction in redness (a*) and yellowness (b*), and an increase in lightness (L*) owing to the removal of lignin. Based on these results, this study demonstrated that the partial removal of lignin from wood surfaces is a fundamental method for resolving photo-degradation.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1G1A101444313).

참고문헌

  1. Abdel-Fattah, A.F., Abdel-Naby, M.A. 2012. Pretreatment and enzymic saccharification of water hyacinth cellulose. Carbohydrate Polymers 87(3): 2109-2113. https://doi.org/10.1016/j.carbpol.2011.10.033
  2. Abdullah, A.R., Hapidin, H., Abdullah, H. 2017. Phytochemical analysis of Quercus infectoria galls extracts using FTIR, LC-MS and MS/MS analysis. Research Journal of Biotechnology 12(12): 55-61.
  3. Borgin, K. 1971. The mechanism of the breakdown of the structure of wood due to environmental factors. Journal of the Institute of Wood Science 5(4): 26-30.
  4. Chang, T.C., Chang, H.T., Wu, C.L., Chang, S.T. 2010. Influences of extractives on the photodegradation of wood. Polymer Degradation and Stability 95(4): 516-521. https://doi.org/10.1016/j.polymdegradstab.2009.12.024
  5. Chen, C., Kuang, Y., Zhu, S., Burgert, I., Keplinger, T., Gong, A., Li, T., Berglund, L., Eichhorn, S.J., Hu, L. 2020. Structure-property-function relationships of natural and engineered wood. Nature Reviews Materials 5(9): 642-666. https://doi.org/10.1038/s41578-020-0195-z
  6. Chen, R., Pignatello, J.J. 1997. Role of quinone intermediates as electron shuttles in Fenton and photoassisted Fenton oxidations of aromatic compounds. Environmental Science & Technology 31(8): 2399-2406. https://doi.org/10.1021/es9610646
  7. Cogulet, A., Blanchet, P., Landry, V. 2016. Wood degradation under UV irradiation: A lignin characterization. Journal of Photochemistry and Photobiology B: Biology 158: 184-191. https://doi.org/10.1016/j.jphotobiol.2016.02.030
  8. Evans, P.D., Schmalzl, K.J. 1989. A quantitative weathering study of wood surfaces modified by chromium VI and iron III compounds. Part 1. Loss in zero-span tensile strength and weight of thin wood veneers. Holzforschung 43(5): 289-292. https://doi.org/10.1515/hfsg.1989.43.5.289
  9. Fan, Y., Gao, J., Chen, Y. 2009. Colour responses of black locust (Robinia pseudoacacia L.) to solvent extraction and heat treatment. Wood Science and Technology 44(4): 667-678. https://doi.org/10.1007/s00226-009-0289-7
  10. Fujimoto, Y., Tanaka, H., Morita, H., Kang, S.G. 2021. Development of ply-lam composed of Japanese cypress laminae and Korean larch plywood. Journal of the Korean Wood Science and Technology 49(1): 57-66. https://doi.org/10.5658/WOOD.2021.49.1.57
  11. Gonultas, O., Candan, Z. 2018. Chemical characterization and FTIR spectroscopy of thermally compressed eucalyptus wood panels. Maderas. Ciencia y Tecnologia 20(3): 431-442.
  12. Guo, H., Fuchs, P., Cabane, E., Michen, B., Hagendorfer, H., Romanyuk, Y.E., Burgert, I. 2016. UV-protection of wood surfaces by controlled morphology fine-tuning of ZnO nanostructures. Holzforschung 70(8): 699-708. https://doi.org/10.1515/hf-2015-0185
  13. Hadi, Y.S., Herliyana, E.N., Pari, G., Pari, R., Abdillah, I.B. 2022. Furfurylation effects on discoloration and physical-mechanical properties of wood from tropical plantation forests. Journal of the Korean Wood Science and Technology 50(1): 46-58. https://doi.org/10.5658/WOOD.2022.50.1.46
  14. Hermansyah, H., Putri, D.N., Prasetyanto, A., Bintang, Z., Chairuddin, M.S.P., Sahlan, M., Yohda, M. 2019. Delignification of oil palm empty fruit bunch using peracetic acid and alkaline peroxide combined with the ultrasound. International Journal of Technology 10(8): 1523-1532. https://doi.org/10.14716/ijtech.v10i8.3464
  15. Jang, S.S., Lee, H.W. 2019. Lateral resistance of CLT wall panels composed of square timber larch core and plywood cross bands. Journal of the Korean Wood Science and Technology 47(5): 547-556. https://doi.org/10.5658/wood.2019.47.5.547
  16. Kang, C., Lee, N. 2005. Changes of sound absorption capability and anatomical features of wood by delignification treatment. Journal of the Korean Wood Science and Technology 33(4): 9-14.
  17. Kang, C.W., Jang, S.S., Kang, H.Y., Li, C. 2019. Sound absorption rate and sound transmission loss of CLT wall panels composed of larch square timber core and plywood cross band. Journal of the Korean Wood Science and Technology 47(1): 33-39. https://doi.org/10.5658/WOOD.2019.47.1.33
  18. Kang, J.W., Doo, Y.S., Jeong, M.J., Kang, K.Y. 2015. The quantitative analysis of solutes from the peracetic acid pretreatment of wood chips. In: Daegu, Korea, Proceedings of Korea Technical Association of the Pulp and Paper Industry, pp. 102-103.
  19. Kataoka, Y. 2008. Photodegradation of wood and depth profile analysis. Mokuzai Gakkai-Shi 54(4): 165-173. https://doi.org/10.2488/jwrs.54.165
  20. Khanjanzadeh, H., Park, B.D. 2020. Characterization of carboxylated cellulose nanocrystals from recycled fiberboard fibers using ammonium persulfate oxidation. Journal of the Korean Wood Science and Technology 48(2): 231-244. https://doi.org/10.5658/WOOD.2020.48.2.231
  21. Kim, G.C., Kim, J.H. 2020. Changes in mechanical properties of wood due to 1 year outdoor exposure. Journal of the Korean Wood Science and Technology 48(1): 12-21. https://doi.org/10.5658/WOOD.2020.48.1.12
  22. Kubovsky, I., Kacikova, D., Kacik, F. 2020. Structural changes of oak wood main components caused by thermal modification. Polymers 12(2): 485. https://doi.org/10.3390/polym12020485
  23. Kuo, M., Hu, N. 1991. Ultrastructural changes of photodegradation of wood surfaces exposed to UV. Holzforschung 45(5): 347-353. https://doi.org/10.1515/hfsg.1991.45.5.347
  24. Kwon, S.M., Jang, J.H., Lee, S.H., Park, S.B., Kim, N.H. 2013. Change of heating value, pH and FT-IR spectra of charcoal at different carbonization temperatures. Journal of the Korean Wood Science and Technology 41(5): 440-446. https://doi.org/10.5658/WOOD.2013.41.5.440
  25. Lee, H.W., Jeong, H., Ju, Y.M., Youe, W.J., Lee, J., Lee, S.M. 2019a. Pyrolysis properties of lignins extracted from different biorefinery processes. Journal of the Korean Wood Science and Technology 47(4): 486-497. https://doi.org/10.5658/WOOD.2019.47.4.486
  26. Lee, I.H., Song, Y.J., Song, D.B., Hong, S.I. 2019b. Results of delamination tests of FRPand steel-plate-reinforced larix composite timber. Journal of the Korean Wood Science and Technology 47(5): 655-662. https://doi.org/10.5658/wood.2019.47.5.655
  27. Li, J., Chen, C., Zhu, J.Y., Ragauskas, A.J., & Hu, L. (2021). In situ wood delignification toward sustainable applications. Accounts of Materials Research 2(8): 606-620. https://doi.org/10.1021/accountsmr.1c00075
  28. Liu, R., Zhu, H., Li, K., Yang, Z. 2019. Comparison on the aging of woods exposed to natural sunlight and artificial xenon light. Polymers 11(4): 709. https://doi.org/10.3390/polym11040709
  29. Liu, X.Y., Timar, M.C., Varodi, A.M., Sawyer, G. 2016. An investigation of accelerated temperature-induced ageing of four wood species: Colour and FTIR. Wood Science and Technology 51(2): 357-378.
  30. Lozhechnikova, A., Bellanger, H., Michen, B., Burgert, I., Osterberg, M. 2017. Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Applied Surface Science 396: 1273-1281. https://doi.org/10.1016/j.apsusc.2016.11.132
  31. Ma, R., Guo, M., Lin, K., Hebert, V.R., Zhang, J., Wolcott, M.P., Zhang, X., Quintero, M., Ramasamy, K.K., Chen, X., Zhang, X. 2016. Peracetic acid depolymerization of biorefinery lignin for production of selective monomeric phenolic compounds. Chemistry: A European Journal 22(31): 10884-10891. https://doi.org/10.1002/chem.201600546
  32. Miranda, I., Gominho, J., Pereira, H. 2012. Cellular structure and chemical composition of cork from the Chinese cork oak (Quercus variabilis). Journal of Wood Science 59(1): 1-9. https://doi.org/10.1007/s10086-012-1300-8
  33. More, A., Elder, T., Jiang, Z. 2021. A review of lignin hydrogen peroxide oxidation chemistry with emphasis on aromatic aldehydes and acids. Holzforschung 75(9): 806-823. https://doi.org/10.1515/hf-2020-0165
  34. Oberhofnerova, E., Panek, M., Garcia-Cimarras, A. 2017. The effect of natural weathering on untreated wood surface. Maderas. Ciencia y Tecnologia 19(2): 173-184.
  35. Owen, J.A., Owen, N.L., Feist, W.C. 1993. Scanning electron microscope and infrared studies of weathering in southern pine. Journal of Molecular Structure 300(1993): 105-114. https://doi.org/10.1016/0022-2860(93)87010-7
  36. Pan, G.X., Spencer, L., Leary, G.J. 2000. A comparative study on reactions of hydrogen peroxide and peracetic acid with lignin chromophores. Part 2. The reaction of stilbene-type model compounds. Holzforschung 54(2): 153-158. https://doi.org/10.1515/HF.2000.026
  37. Pandey, K.K. 2005. A note on the influence of extractives on the photo-discoloration and photo-degradation of wood. Polymer Degradation and Stability 87(2): 375-379. https://doi.org/10.1016/j.polymdegradstab.2004.09.007
  38. Pandey, K.K., Vuorinen, T. 2008. Comparative study of photodegradation of wood by a UV laser and a xenon light source. Polymer Degradation and Stability 93(12): 2138-2146. https://doi.org/10.1016/j.polymdegradstab.2008.08.013
  39. Panek, M., Oberhofnerova, E., Zeidler, A., Sedivka, P. 2017. Efficacy of hydrophobic coatings in protecting oak wood surfaces during accelerated weathering. Coatings 7(10): 172. https://doi.org/10.3390/coatings7100172
  40. Park, S.Y., Cho, S.M., Kim, J.C., Hong, C., Kim, S.H., Ryu, G.H., Choi, I.G. 2019. Effects of peracetic acid and hydrogen peroxide concentration on kraft lignin degradation at room temperature. BioResources 14(2): 4413-4429. https://doi.org/10.15376/biores.14.2.4413-4429
  41. Park, S.Y., Choi, J.H., Cho, S.M., Choi, J.W., Choi, I.G. 2020b. Structural analysis of open-column fractionation of peracetic acid-treated kraft lignin. Journal of the Korean Wood Science and Technology 48(6): 769-779. https://doi.org/10.5658/WOOD.2020.48.6.769
  42. Park, S.Y., Choi, J.H., Kim, J.H., Cho, S.M., Yeon, S., Jeong, H., Lee, S.M., Choi, I.G. 2020a. Peracetic acid-induced kraft lignin solubilization and its characterization for selective production of macromolecular biopolymers. International Journal of Biological Macromolecules 161: 1240-1246. https://doi.org/10.1016/j.ijbiomac.2020.06.041
  43. Park, S.Y., Hong, C.Y., Kim, S.H., Choi, J.H., Kwon, O., Lee, H.J., Choi, I.G. 2018a. Photodegradation of natural wood veneer and studies on its color stabilization for automotive interior materials. Journal of Wood Chemistry and Technology 38(4): 301-312. https://doi.org/10.1080/02773813.2018.1488872
  44. Park, S.Y., Hong, C.Y., Kim, S.H., Choi, J.H., Lee, H.J., Choi, I.G. 2018b. Studies on photoprotection of walnut veneer exposed to UV light. Journal of the Korean Wood Science and Technology 46(3): 221-230. https://doi.org/10.5658/WOOD.2018.46.3.221
  45. Plackett, D.V., Dunningham, E.A., Singh, A.P. 1992. Weathering of chemically modified wood. Holz als Roh-und Werkstoff 50: 135-140. https://doi.org/10.1007/BF02663254
  46. Rosu, D., Teaca, C.A., Bodirlau, R., & Rosu, L. (2010). FTIR and color change of the modified wood as a result of artificial light irradiation. Journal of Photochemistry and Photobiology B: Biology, 99(3): 144-149. https://doi.org/10.1016/j.jphotobiol.2010.03.010
  47. Scheck, C.K., Frimmel, F.H. 1995. Degradation of phenol and salicylic acid by ultraviolet radiation/hydrogen peroxide/oxygen. Water Research 29(10): 2346-2352. https://doi.org/10.1016/0043-1354(95)00060-X
  48. Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy 36(1): 23-40. https://doi.org/10.1016/j.vibspec.2004.02.003
  49. Timar, M.C., Varodi, A.M., Gurau, L. 2016. Comparative study of photodegradation of six wood species after short-time UV exposure. Wood Science and Technology 50(1): 135-163. https://doi.org/10.1007/s00226-015-0771-3
  50. Tshabalala, M.A., Gangstad, J.E. 2003. Accelerated weathering of wood surfaces coated with multifunctional alkoxysilanes by sol-gel deposition. Journal of Coatings Technology 75(943): 37-43. https://doi.org/10.1007/bf02730098
  51. Vasileva, E., Li, Y., Sychugov, I., Mensi, M., Berglund, L., Popov, S. 2017. Lasing from organic dye molecules embedded in transparent wood. Advanced Optical Materials 5(10): 1700057. https://doi.org/10.1002/adom.201700057
  52. Vaughn, S.F., Kenar, J.A., Tisserat, B., Jackson, M.A., Joshee, N., Vaidya, B.N., Peterson, S.C. 2017. Chemical and physical properties of Paulownia elongata biochar modified with oxidants for horticultural applications. Industrial Crops and Products 97: 260-267. https://doi.org/10.1016/j.indcrop.2016.12.017
  53. Westin, P.O., Yang, X., Svedberg, A., Grundberg, H., Berglund, L.A. 2021. Single step PAA delignification of wood chips for high-performance holocellulose fibers. Cellulose 28(3): 1873-1880. https://doi.org/10.1007/s10570-020-03625-5
  54. Xing, D., Li, J. 2014. Effects of heat treatment on thermal decomposition and combustion performance of Larix spp. wood. BioResources 9(3): 4274-4287.
  55. Xing, D., Li, J., Wang, S. 2020. Comparison of the chemical and micromechanical properties of Larix spp. after eco-friendly heat treatments measured by in situ nanoindentation. Scientific Reports 10(1): 4358. https://doi.org/10.1038/s41598-020-61314-6
  56. Yamamoto, A., Rohumaa, A., Hughes, M., Vuorinen, T., Rautkari, L. 2017. Surface modification of birch veneer by peroxide bleaching. Wood Science and Technology 51(1): 85-95. https://doi.org/10.1007/s00226-016-0880-7
  57. Yang, I., Jeong, H., Lee, J.J., Lee, S.M. 2019. Relationship between lignin content and the durability of wood pellets fabricated using Larix kaempferi C. Sawdust. Journal of the Korean Wood Science and Technology 47(1): 110-123. https://doi.org/10.5658/WOOD.2019.47.1.110
  58. Yin, X., Huang, A., Zhang, S., Liu, R., Ma, F. 2018. Identification of three Dalbergia species based on differences in extractive components. Molecules 23(9): 2163. https://doi.org/10.3390/molecules23092163
  59. Zendrato, H.M., Devi, Y.S., Masruchin, N., Wistara, N.J. 2021. Soda pulping of torch ginger stem: Promising source of nonwood-based cellulose. Journal of the Korean Wood Science and Technology 49(4): 287-298. https://doi.org/10.5658/WOOD.2021.49.4.287
  60. Zhang, Y., Yang, L., Wang, D., Li, D. 2018. Structure elucidation and properties of different lignins isolated from acorn shell of Quercus variabilis Bl. International Journal of Biological Macromolecules 107: 1193-1202. https://doi.org/10.1016/j.ijbiomac.2017.09.099
  61. Zhao, Q., Nakashima, J., Chen, F., Yin, Y., Fu, C., Yun, J., Shao, H., Wang, X., Wang, Z.Y., Dixon, R.A. 2013. Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. The Plant Cell 25(10): 3976-3987. https://doi.org/10.1105/tpc.113.117770