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APPROXIMATE PROJECTION ALGORITHMS FOR SOLVING

EQUILIBRIUM AND MULTIVALUED VARIATIONAL

INEQUALITY PROBLEMS IN HILBERT SPACE

Nguyen Minh Khoa and Tran Van Thang

Abstract. In this paper, we propose new algorithms for solving equi-
librium and multivalued variational inequality problems in a real Hilbert

space. The first algorithm for equilibrium problems uses only one ap-

proximate projection at each iteration to generate an iteration sequence
converging strongly to a solution of the problem underlining the bifunc-

tion is pseudomonotone. On the basis of the proposed algorithm for the
equilibrium problems, we introduce a new algorithm for solving multival-

ued variational inequality problems. Some fundamental experiments are

given to illustrate our algorithms as well as to compare them with other
algorithms.

1. Introduction

Let H denote a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖.
First, the article is interested in a method for finding a solution of the following
equilibrium problems:

(EPs) Find p ∈ C such that f(p, y) ≥ 0 ∀y ∈ C,
where f : C × C → R is a bifunction such that f(x, x) = 0 for all x ∈ C and
the nonempty subset C in H is defined by

C := {x ∈ H : gi(x) ≤ 0},
gi : H → R is a subdifferentiable, lower semicontinuous, convex function on
H for every i = 1, 2, . . . ,m. In the framework of this paper, we denote the
solution set of Problem (EPs) by Sol(EPs). A bifunction f : C × C → H is
said to be

(C1) γ-strongly monotone on C, if f(x, y)+f(y, x) ≤ −γ‖x−y‖2 ∀x, y ∈ C;
(C2) monotone on C, if f(x, y) + f(y, x) ≤ 0 ∀x, y ∈ C;
(C3) pseudomonotone on C, if f(x, y) ≥ 0⇒ f(y, x) ≤ 0 ∀x, y ∈ C;
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(C4) Lipschitz-type continuous with constants c1 > 0 and c2 > 0 (introduced
first by Mastroeni in [22]), if

f(x, y) + f(y, z) ≥ f(x, z)− c1‖x− y‖2 − c2‖y − z‖2 ∀x, y, z ∈ C.
Problem (EPs) is a general model of some important mathematical models
such as optimization, variational inequality, Kakutani fixed point, and so on
(see, for example, [6,12]). Therefore, the problem has received a lot of research
attention from mathematicians. In order to solve (EPs), many iterative meth-
ods have been proposed, among them, the projection and the extragradient (or
double projection) algorithms are widely used (see [8,13,18,24,26–28] and the
references therein). Some other methods for solving (EPs) can be found, for
example, in [1, 15,16,23,30].

In the special case, when f(x, y) = 〈F (x), y − x〉, where F : C → H is a
mapping, Problem (EPs) is equivalent to the following variational inequality
problem:

(V IPs) Find p ∈ C such that 〈F (p), x− p〉 ≥ 0 ∀y ∈ C.
There are many ways to solve this problem but projection method and extra-
gradient method are still the most popular methods (see [4,5,9,18,20,25,29]).
The metric projection from H onto C is defined by PC and

PC(x) = argmin{‖x− y‖ : y ∈ C}, ∀x ∈ H.

It is easy to check that a point p is a solution of Problem (V IPs) if and only
if it is a fixed point of the following mapping:

S(x) = PC(x− λF (x))

for any λ > 0. From the above idea, several algorithms that only use one
projection at each iteration are proposed (see [5, 11]). However, these meth-
ods require too harsh assumptions to obtain convergence theorems, such as the
strong monotonicity or inverse strong monotonicity of the mapping F (x). In
general, the projection algorithm is not convergent even if F is a monotone
mapping [10]. To obtain the convergence results of the projection algorithms,
the extragradient algorithms have been proposed. In [18], Korpelevich intro-
duced an extragradient algorithm that is determined by the following iterative
formula:

(1)


x0 ∈ C,
yk = PC(xk − λkF (xk)),

xk+1 = PC(xk − λkF (yk)),

where λk ∈ (0, 1
L ) and L is the Lipschitz constant of F . The author showed

that the algorithm is convergent when F is monotone and L-Lipschitz contin-
uous. Afterward, Korpelevich’s extragradient method (1) has been extended
and improved by many mathematicians in different ways [7, 9]. Notice that
this algorithm requires computing two projections onto the feasible set C at
each iteration. This can be computationally expensive when the set C is not so
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simple. To overcome this drawback, in [29], Tseng has proposed the following
extragradient algorithm for solving Problem (V IPs):

x0 ∈ C,
yk = PC(xk − λF (xk)),

xk+1 = yk + λ(F (xk)− F (yk)),

where λ ∈ (0, 1
L ). However, this algorithm only obtains weak convergence in

real Hilbert spaces. Very recently, Tseng’s extragradient method has received
great attention from many researchers (see [20] and the references therein).

The first aim of this article is to introduce a new algorithm for solving
equilibrium Problem (EPs) by modifying Tseng’s extragradient method. The
proposed algorithm only uses one approximate projection on the feasible C
at each iteration to generate the iteration sequence converging strongly to a
solution of the problem when the bifunction f is pseudomonotone and satisfies
the following assumption:

(C5) ρ (∂2f(x, ·)(x), ∂2f(y, ·)(y)) ≤ L‖x− y‖, ∀x, y ∈ C,
where ρ(M,N ) is the Hausdorff distance between two subsetsM and N of H,
i.e.,

ρ(M,N ) := max{d(M,N ), d(N ,M)},
d(M,N ) := sup

x∈M
inf
y∈N
‖x − y‖. Observe that if F is a pseudomonotone and

L-Lipschitz continuous mapping on C, then g(x, y) = 〈F (x), y − x〉 is pseu-
domonotone and satisfies the assumption (C5). In the later part of this paper,
we can show that there doesn’t exist an inclusive relationship between the set
of all bifunctions satisfying (C5) and the set of all Lipschitz-type continuous
bifunctions. In many research results, in order to obtain the strong conver-
gence theorem, the bifunction f must satisfy the assumption (C4) and one of
the assumptions (C1)-(C3) (see [13,14,24]). Moreover, the Lipschitz constants
need to be known to be able to implement these algorithms. In practice, these
constants are often unknown or difficult to calculate accurately. Our algorithm
only needs to choose an arbitrarily approximate parameter L satisfying L > L
and does not use any line search procedure to update the step size at each iter-
ation. If f(x, ·) is convex and differentiable on C, then the proposed algorithm
can be implemented without prior knowledge of constants L, L. On the basis
of the proposed algorithm for problem (EPs), we develop a new algorithm for
the following multivalued variational inequality problem in real Hilbert space:

(MV IPs) Find (p, up) ∈ C × F (p) such that 〈up, x− p〉 ≥ 0, ∀x ∈ C,

where F : H → 2H is a multivalued mapping with nonempty values. We can
prove that the algorithm is strongly convergent when F is L-Lipschitz Haus-
dorff continuous and pseudomonotone on H. We also provide some numerical
examples to illustrate the performance of the proposed method where the bi-
function f is not Lipschitz-type continuous.
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The paper is organized as follows. We first recall some necessary concepts
and lemmas in Section 2. In Section 3, we introduce an approximate projec-
tion algorithm for solving Problem (EPs) and prove the strong convergence
theorem of the algorithm. Section 4 gives the algorithm for the multivalued
variational inequality problem (MV IPs). In the last section, several funda-
mental experiments are provided to illustrate the convergence of our algorithms
and compare them with others.

2. Preliminaries

In this section, we review some concepts and results that are used to prove
the main results of this paper.

We first recall some well-known definitions of monotonicity for nonlinear
operators.

Definition. Let F : C → 2H be a multivalued mapping. Then F is said to be

(i) monotone on C, if

〈u− v, x− y〉 ≥ 0, ∀x, y ∈ C, u ∈ F (x), v ∈ F (y);

(ii) pseudomonotone on C, if

〈v, x− y〉 ≥ 0⇒ 〈u, x− y〉 ≥ 0, ∀x, y ∈ C, u ∈ F (x), v ∈ F (y).

It is easy to check that if F is monotone, then F is pseudomonotone. But
the converse is not true. Indeed, let F be a multivalued mapping defined by:

F (x) = {tMx : t ∈ [a, b]} ∀x ∈ Rn,

where 0 < a < b and M is an n × n positive semidefinite matrix. Let t1, t2 ∈
[a, b] and 〈t2My, x−y〉 ≥ 0. Then, we have 〈My, x−y〉 ≥ 0. From the positive
semidefinite assumption of M , it follows that 〈Mx, x − y〉 ≥ 0, equivalently,
〈t1Mx, x − y〉 ≥ 0. Therefore, F is pseudomonotone on Rn. Clearly, F is not
monotone.

If {xk} is a sequence in H, then we denote by xk → p the strong convergence
of {xk} to p and xk ⇀ p the weak convergence. We now recall some weak
continuity concepts of a function.

Definition. A mapping g : H→ (−∞,+∞] is said to be

(i) sequentially weakly continuous at x̄, if limx⇀x̄ g(x) = g(x̄), and sequen-
tially weakly continuous on H if this holds for every x̄ in H.

(ii) sequentially weakly lower semicontinuous at x̄, if lim infx⇀x̄ g(x) ≥
g(x̄), and sequentially weakly lower semicontinuous on H if this holds
for every x̄ in H.

(iii) sequentially weakly upper semicontinuous at x̄, if lim supx⇀x̄ g(x) ≤
g(x̄), and sequentially weakly upper semicontinuous on H if this holds
for every x̄ in H.
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We have already known that the norm mapping g(x) = ‖x‖ is sequentially
weakly lower semicontinuous on H.

Next, we recall that the subdifferential of a convex function g : C → R ∪
{+∞} is defined by

∂g(p) = {x∗ ∈ H : g(x)− g(p) ≥ 〈x∗, x− p〉 ∀x ∈ C}.

If ∂g(x) 6= ∅, then g is called subdifferentiable at x. The function g is said to
be differentiable on C if f is differentiable at every x in C. The outer normal
cone NC of C at p ∈ C is defined by

NC(x) = {x∗ ∈ H : 〈x∗, x− p〉 ≤ 0 ∀x ∈ C}.

To obtain the main results that are presented in Sections 3 and 4, we will
use the following lemmas in the sequel.

Lemma 2.1. For every u, v ∈ H, we have the following assertions.

(i) ‖u+ v‖2 = ‖u‖2 + 2〈u, v〉+ ‖v‖2;
(ii) ‖u+ v‖2 ≤ ‖u‖2 + 2〈v, u+ v〉.

From the definition of projection, it is easy to see that PC has the following
characteristic properties.

Lemma 2.2. For any x ∈ H, we have

(i) p = PC(x) if and only if 〈p− x, y − p〉 ≤ 0, ∀y ∈ C;
(ii) ‖PC(x)− PC(y)‖ ≤ ‖x− y‖, ∀x, y ∈ H.

Lemma 2.3. Let C be a convex subset of a real Hilbert space H, g : C →
(−∞,+∞] be convex and subdifferentiable. Then, p is an optimal solution of
the following convex minimization problem

min{g(x) : x ∈ C}

if and only if 0 ∈ ∂g(p) +NC(p).

Lemma 2.4 ([21]). Let {ξk} be a sequence of nonnegative real numbers satis-
fying the following condition

ξk+1 ≤ (1− tk)ξk + tkαk + βk, ∀k ≥ 1,

where {tk} ⊂ [0, 1],
∑∞
k=0 tk = +∞, lim supk→∞ αk ≤ 0 and βk ≥ 0,

∑∞
n=1 βk

<∞. Then, limk→∞ ξk = 0.

Lemma 2.5 ([21, Remark 4.4]). Let {ξk} be a sequence of nonnegative real
numbers. Suppose that for any integer m, there exists an integer M such that
M ≥ m and ξM ≤ ξM+1. Let k̄ be an integer such that ξk̄ ≤ ξk̄+1 and define,

for all integer k ≥ k̄,

τ(k) = max{i ∈ N : k̄ ≤ i ≤ k, ξi ≤ ξi+1}.

Then, 0 ≤ ξk ≤ ξτ(k)+1 for all k ≥ k̄ the and sequence {τ(k)}k≥k̄ is nonde-
creasing and tends to +∞ as k →∞.
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3. Algorithm for equilibrium problem

In this section, we develop a new iterative algorithm for solving the equilib-
rium problem (EPs). In order to prove convergence of the sequences generated
by the proposed algorithm, we need to use the following assumptions imposed
on the bifunction f .

T1. f(x, x) = 0 for all x ∈ C, f(x, y) is pseudomonotone on C × C and
f(·, y) is sequentially weakly upper semicontinuous on C;

T2. there exists a real positive number L such that

ρ
(
∂2f(x, ·)(x), ∂2f(y, ·)(y)

)
≤ L‖x− y‖, ∀x, y ∈ C,

where ∂2f(x, ·)(x) is subdifferential of f(x, ·) at x, i.e.,

∂2f(x, ·)(x) = {ξ ∈ H : 〈ξ, z − y〉 ≤ f(x, z), ∀z ∈ C};
T3. Sol(EPs) is nonempty;
T4. f(x, ·) is convex and lower semicontinuous, subdifferentiable on C.

Remark 3.1. There isn’t an inclusive relationship between the set of all func-
tions satisfying the assumption (T2) and the set of all Lipschitz-type continuous
functions. Indeed, let bifunction f : R× R→ R be defined by

f(x, y) = y3 − x3 − y2 + xy.

It is easy to check that the bifunction f is Lipschitz-type continuous with
constants c1 = c2 = 1

2 , i.e.,

f(x, y) + f(y, z) ≥ f(x, z)− 1

2
‖x− y‖2 − 1

2
‖y − z‖2 ∀ x, y, z ∈ R.

On the other hand, we have from the definition of f that

ρ
(
∂2f(x, ·)(x), ∂2f(y, ·)(y)

)
= |x− y||3y + 3x+ 1|, ∀ x, y ∈ R.

In order that f satisfies the assumption (T2), it must have |3y + 3x + 1| ≤
L, ∀ x, y ∈ R for some L > 0. This is a contradiction. We next show that
there exists a bifunction that satisfies the assumptions (T1), (T2) and (T4) but
isn’t Lipschitz-type continuous. For every x, y ∈ Rn, setting

f(x, y) = 〈Px+Qy + q, y − x〉+ α‖B(y − x)‖2‖x‖2,
where α ∈ R, q ∈ Rn, B, P and Q are n×n matrices such that Q is symmetric
positive semidefinite and P − Q is negative semidefinite. As known in [28],
the bifunction g(x, y) = 〈Px + Qy + q, y − x〉 is often found in Nash-Cournot
equilibrium models and satisfies the assumptions (T1) and (T4). Hence, it
is not difficult to prove that f(x, y) satisfies the assumptions (T1), (T4) and
∂2f(x, ·)(x) = {Px+Qx+ q}, ∂2f(y, ·)(y) = {Py +Qy + q}. It follows that

ρ (∂2f(x, ·)(x), ∂2f(y, ·)(y)) = ‖(Q−P )(x−y)‖ ≤ ‖Q−P‖‖x−y‖, ∀x, y ∈ Rn.
Finally, we show that the bifunction f is not Lipschitz-type continuous on R×R.
For simplicity, we consider n = 1 and αB 6= 0. Assume that f is Lipschitz-type
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continuous with constants c1 > 0 and c2 > 0 on H, i.e., for every x, y, z ∈ R we
have

(Px+Qy + q)(y − x) + αB2(y − x)2x2 + (Py +Qz + q)(z − y)

+ αB2(z − y)2y2

≥ (Px+Qz + q)(z − x) + αB2(z − x)2x2 − c1‖x− y‖2 − c2‖y − z‖2.
Replacing x = k + 1, y = k, z = k − 1 on the last inequality, we obtain the
following relation

αB2(−2k2 + 8k − 7)− αB2Q ≥ −c1 − c2 ∀k.
Taking the limit as k → +∞ on both sides of the above inequality, we get a
contradiction. Hence, f is not Lipschitz-type continuous.

As is known, in some previous studies [13,24], to obtain a strong convergence
algorithm for non-monotone problems, it is necessary to add the assumption
that the function f is Lipschitz-type continuous. Moreover, the algorithms in
[13, 24] use more than one projection at each iteration. Now, we propose a
new algorithm for (EPs) which only uses one projection at each iteration. It
is described as follows.

In order to find a point of the set C, we can use the following procedure:

Procedure A: Data: A Point x ∈ H. Output: A point R(x) ∈ C.

Step a. If x ∈ C, set R(x) = x. Otherwise, set y0 = x, k = 0.

Step b. Choose wk ∈ ∂g(yk), compute yk+1 = yk − 2g(yk) wk

‖wk‖2 , where

g(x) = max{gi(x) : i = 1, 2, . . . ,m},∀x ∈ H.

Step c. If yk+1 ∈ C, then set R(x) := yk+1 and stop. Otherwise, set k = k+1,
go to Step b.

Note that if wk = 0, then we have from wk ∈ ∂g(yk) that

g(x)− g(yk) ≥ 〈wk, x− x̄k〉 = 0, ∀x ∈ C.
It follows that g(yk) ≤ g(x) ≤ 0 for all x ∈ C, and so yk ∈ C. We know in [17]
that the number of iterations in Procedure A is finite and

(2) ‖R(x)− y‖ ≤ ‖x− y‖, ∀y ∈ C.

Algorithm 3.2. Take arbitrary starting point x0 ∈ C, λ0 > 0, 0 < ν < 1, L >
L and control parameter sequences {tk}, {εk}, {ηk}, {λk}, {ρk} satisfying
conditions:

(3)



0 < ρk,
+∞∑
k=0

ρk < +∞, tk ∈ (0, 1), lim
k→∞

tk = 0,
+∞∑
k=0

tk = +∞

εk ∈ (0, 1), lim
k→∞

εk
tk

= 0,
+∞∑
k=0

εk < +∞, ηk ∈ [0, 1), lim
k→∞

ηk
tk

= 0

+∞∑
k=0

ηk < +∞.
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Step 1. (Apply Procedure A) Set x̄k := R(xk).
Step 2. Choose uk ∈ ∂2f(x̄k, x̄k). If uk = 0, then Stop. Otherwise, find

yk ∈ C such that〈
yk − x̄k + λku

k, x− yk
〉
≥ −εk ∀x ∈ C.

Step 3. Take
vk ∈ B

(
uk, L‖x̄k − yk‖

)
∩ ∂2f(yk, yk),

where B
(
uk, L‖x̄k − yk‖

)
:= {u ∈ H : ‖u−uk‖ ≤ L‖x̄k−yk‖}. If vk =

0, then Stop. Otherwise, compute zk = (1+θk)yk−θkx̄k+λk(uk−vk),
where

θk =

{
min{ ηk

‖uk‖‖x̄k−yk‖ , ηk}, if x̄k − yk 6= 0,

ηk otherwise.
(4)

Compute xk+1 = tkx
0 + (1− tk)zk and

λk+1 =

{
min

{
ν‖x̄k−yk‖
‖uk−vk‖ , λk + ρk

}
, if uk − vk 6= 0,

λk + ρk otherwise,
(5)

Step 4. Let k := k + 1 and return to Step 1.

Remark 3.3. (i) If uk = 0, from uk ∈ ∂2f(x̄k, x̄k) in Step 2, we have

f(x̄k, x) = f(x̄k, x)− f(x̄k, x̄k) ≥ 〈uk, x− x̄k〉 = 0, ∀x ∈ C.
Hence, the algorithm terminates at iteration k and x̄k is a solution of Problem
(EPs).

(ii) Let yk = PC(x̄k − λkuk). Applying Lemma 2.2(i), we deduce that〈
yk − x̄k + λku

k, x− yk
〉
≥ 0 ∀x ∈ C.

Thus, yk ∈ C satisfying Step 2 is always determined.
(iii) We have from the assumption (T4) that ∂2f(yk, yk) is a nonempty, closed

and convex set in H. Which together the assumption (T2) implies that

‖uk − P∂2f(yk,yk)(u
k)‖ ≤ ρ

(
∂2f(x̄k, ·)(x̄k), ∂2f(y,·)(yk)

)
≤ L‖x̄k − yk‖.

Therefore, we can always choose vk satisfying Step 3. If the f(x, ·) is differ-
entiable on H, then vk is uniquely determined and vk = ∇f(yk, ·)(yk).

(iv) From (4) and Condition (3), it is easy to check that

θk ∈ (0, 1), θk‖uk‖‖x̄k − yk‖ ≤ ηk, ∀k ≥ 0 and lim
k→∞

θk = 0.

We first obtain the following important lemma.

Lemma 3.4. Assume that (T1)-(T4) hold. Let p ∈ Sol(EPs) and {xk}, {x̄k},
{yk}, {zk}, {λk} be the sequences generated by Algorithm 3.2. Then,

(i) λk ∈ [min{ νL , λ0}, λ0+M ], ∀k ≥ 0 and limk→∞ λk = λ, where
∑+∞
k=0 ρk

= M ;
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(ii) ‖zk − p‖2 ≤ ‖xk − p‖2 −
[
1−

(
θk + λk

ν
λk+1

)2
]
‖yk − x̄k‖2 + 2(λ0 +

M)ηk + 4εk.

Proof. If uk−vk 6= 0, then we have from L-Lipschitz continuity of F and L ≤ L
that

(6)
ν‖x̄k − yk‖
‖uk − vk‖

≥ ν‖x̄k − yk‖
L‖x̄k − yk‖

=
ν

L
.

Using mathematical induction proof method, we can prove that {λk} belongs to
[min{ νL , λ0}, λ0+M ], ∀k ≥ 0. Indeed, assume that λk ∈ [min{ νL , λ0}, λ0+M ].
Then, we have from min{ νL , λ0} < λk+ρk, (5) and (6) that min{ νL , λ0} < λk+1.
Using (5) and Condition (3), we get

λk+1 ≤ λk + ρk ≤ · · · ≤ λ0 +

k∑
i=0

ρi ≤ λ0 +

+∞∑
i=0

ρi = λ0 +M.

Hence, λk+1 ∈ [min{ νL , λ0}, λ0 +M ]. Set (λk+1 − λk)+ = max{0, λk+1 − λk}
and (λk+1 − λk)− = max{0,−(λk+1 − λk)}. It follows from (5) that

(7)

+∞∑
k=0

(λk+1 − λk)+ ≤
+∞∑
k=0

ρk < +∞.

Assume that
∑+∞
k=0(λk+1 − λk)− = +∞. From the following quality

λk+1 − λk = (λk+1 − λk)+ − (λk+1 − λk)−,

it follows that

λk+1 − λ0 =

k∑
i=0

(λi+1 − λi) =

k∑
i=0

(λi+1 − λi)+ −
k∑
i=0

(λi+1 − λi)−.

Taking the limit as k → ∞ on both sides of the last inequality and using (7),

we have λk → −∞. That is a contradiction. Hence,
∑+∞
k=0(λk+1−λk)− < +∞.

This together with (7) implies that limk→∞ λk = λ ∈ [min{ νL , λ0}, λ0 +M ].

Now we prove (ii). By zk = (1 + θk)yk− θkx̄k +λk(uk− vk) and Lemma 2.1
(i), we have

‖zk − p‖2

= ‖(1 + θk)(yk − x̄k) + (x̄k − p) + λk(uk − vk)‖2

= ‖(1 + θk)(yk − x̄k) + (x̄k − p)‖2 + 2λk(1 + θk)〈uk − vk, yk − x̄k〉

+ 2λk〈uk − vk, x̄k − p〉+ λ2
k‖vk − uk‖2

= (1 + θk)2‖yk − x̄k‖2 + 2(1 + θk)〈yk − x̄k, x̄k − p〉

+ ‖x̄k − p‖2 + λ2
k‖vk − uk‖2 + 2λk(1 + θk)〈uk − vk, yk − x̄k〉

+ 2λk〈uk − vk, x̄k − p〉
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= ‖x̄k − p‖2 + (1 + θk)2‖yk − x̄k‖2 + 2λk(1 + θk)〈uk − vk, yk − x̄k〉

+ λ2
k‖vk − uk‖2 + 2(1 + θk)〈yk − x̄k, x̄k − p〉 − 2λk〈vk − uk, x̄k − yk〉

− 2λk〈vk − uk, yk − p〉

= ‖x̄k − p‖2 + (θ2
k − 1)‖yk − x̄k‖2 + 2λkθk〈uk − vk, yk − x̄k〉

+ λ2
k‖vk − uk‖2 + 2(1 + θk)〈yk − x̄k, yk − p〉 − 2λk〈vk, yk − p〉

+ 2λk〈uk, yk − p〉.(8)

It follows from (5) that

(9) ‖vk − uk‖ ≤ ν

λk+1
‖yk − x̄k‖.

Using Cauchy-Schwarz Theorem and (9), we obtain

〈uk − vk, yk − x̄k〉 ≤ ‖uk − vk‖‖yk − x̄k‖ ≤ ν

λk+1
‖yk − x̄k‖2.

This together with (8) and (9) implies that

‖zk − p‖2

≤ ‖x̄k − p‖2 + (θ2
k − 1)‖yk − x̄k‖2

+ 2λkθk
ν

λk+1
‖yk − x̄k‖2 + λ2

k

ν2

λ2
k+1

‖yk − x̄k‖2

+ 2(1 + θk)〈yk − x̄k, yk − p〉 − 2λk〈vk, yk − p〉+ 2λk〈uk, yk − p〉.

≤ ‖x̄k − p‖2 −

[
1−

(
θk + λk

ν

λk+1

)2
]
‖yk − x̄k‖2

+ 2(1 + θk)〈yk − x̄k, yk − p〉 − 2λk〈vk, yk − p〉+ 2λk〈uk, yk − p〉.(10)

We have from the definition of yk in Step 2 that 〈yk − x̄k + λku
k, x − yk〉 ≥

−εk ∀x ∈ C. Substituting x by p ∈ Sol(EPs) ⊂ C on the last inequality, we
obtain

〈yk − p, x̄k − yk − λkuk〉 ≥ −εk.
It is equivalent to

(11) 〈yk − x̄k, yk − p〉 ≤ −λk〈uk, yk − p〉+ εk.

On the other hand, by using vk ∈ ∂2f(yk, yk), p ∈ Sol(EPs) and the pseu-
domonotone assumption of f(x, y), we get

〈vk, yk − p〉 ≥ −f(yk, p) ≥ 0, ∀k ≥ 0,

which together with (10) and (11) implies that

‖zk − p‖2

≤ ‖x̄k − p‖2 −

[
1−

(
θk + λk

ν

λk+1

)2
]
‖yk − x̄k‖2
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− 2(1 + θk)λk〈uk, yk − p〉+ 2λk〈uk, yk − p〉+ 2(1 + θk)εk

≤ ‖x̄k − p‖2 −

[
1−

(
θk + λk

ν

λk+1

)2
]
‖yk − x̄k‖2 − 2θkλk〈uk, yk − p〉

+ 2(1 + θk)εk

≤ ‖x̄k − p‖2 −

[
1−

(
θk + λk

ν

λk+1

)2
]
‖yk − x̄k‖2 + 2θkλk〈uk, x̄k − yk〉

− 2θkλk〈uk, x̄k − p〉+ 2(1 + θk)εk.(12)

It follows from uk ∈ ∂2f(x̄k, x̄k), p ∈ Sol(EPs) and the pseudomonotone
assumption of f(x, y) that

〈uk, x̄k − p〉 ≥ −f(x̄k, p) ≥ 0, ∀k ≥ 0.

Combining the last inequality, Remark 3.3(iv), λk ∈ [min{ νL , λ0}, λ0 +M ], (2)
and (12), we obtain the inequality in (ii). �

Lemma 3.5. Assume that (T1)-(T4) hold. Then, the sequences {xk}, {yk},
{zk} and {uk − vk} are bounded.

Proof. Let p ∈ Sol(EPs). We have from Lemma 3.4(i), Remark 3.3(iv) and
Condition (3) that

lim
k→∞

[
1−

(
θk + λk

ν

λk+1

)2
]

= 1− ν2 > 0,

which implies that there exists a nonnegative integer K0 such that

1−
(
θk + λk

ν

λk+1

)2

> 0, ∀k ≥ K0.

From the above inequality and Lemma 3.4(ii), it follows that

‖zk − p‖2 ≤ ‖xk − p‖2 + 2(λ0 +M)ηk + 4εk, ∀k ≥ K0.

Therefore, from the definition of xk+1, for every k ≥ K0, we have

‖xk+1 − p‖2 = ‖tkx0 + (1− tk)zk − p‖2

≤ tk‖x0 − p‖2 + (1− tk)‖zk − p‖2

≤ tk‖x0 − p‖2 + (1− tk)(‖xk − p‖2 + 2(λ0 +M)ηk + 4εk)

≤ max
{
‖x0 − p‖2, ‖xk − p‖2 +Ak

}
,(13)

where Ak = 2(λ0 +M)ηk + 4εk for every k ≥ K0. Similarly, we have

‖xk − p‖2 ≤max{‖x0 − p‖2, ‖xk−1 − p‖2 +Ak−1}.
This together with (13) implies that

‖xk+1 − p‖2 ≤ max
{
‖x0 − p‖2, ‖x0 − p‖2 +Ak, ‖xk−1 − p‖2 +Ak−1 +Ak

}
= max

{
‖x0 − p‖2 +Ak, ‖xk−1 − p‖2 +Ak−1 +Ak

}
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· · ·

≤ max

{
‖x0 − p‖2 +

k∑
i=K0+1

Ai, ‖xK0 − p‖2 +

k∑
i=K0

Ai

}

≤ max
{
‖x0 − p‖2, ‖xK0 − p‖2

}
+

∞∑
k=K0

Ak

< +∞,

where the latest equality holds because
∑∞
k=K0

Ak < +∞. This implies that

{xk} is bounded. The boundness of {x̄k} follows from (2). Again, by Lemma
3.4(ii), for all k ≥ K0, we have

(14) ‖zk − p‖2 ≤ ‖xk − p‖2 + 2(λ0 +M)ηk + 4εk

and[(
θk + λk

ν

λk+1

)2

− 1

]
‖yk− x̄k‖2 ≤ ‖xk−p‖2−‖zk−p‖2 +2(λ0 +M)ηk+4εk.

It follows from (14) that {zk} is bounded. This together with the last inequality
and the boundedness of {xk} implies that {yk} is bounded. Finally, we can
deduce from vk ∈ B

(
uk, L‖x̄k − yk‖

)
that

‖uk − vk‖ ≤ L‖x̄k − yk‖,

and so the sequence {uk − vk} is bounded. �

Lemma 3.6. Assume that (T1)-(T4) hold. Let ‖x̄k−yk‖ → 0 and a subsequence
{x̄ki} of {x̄k} converge weakly to p. Then, p ∈ Sol(EPs).

Proof. Since ‖x̄k − yk‖ → 0 and the subsequence {x̄ki} converges weakly to p,
the sequence {yki} also converges weakly to p. From vk ∈ B

(
uk, L‖x̄k − yk‖

)
,

it follows that

‖uk − vk‖ ≤ L‖x̄k − yk‖,
and so limk→∞ ‖uk − vk‖ = 0. We get from Step 2 that

〈yki − x̄ki + λkiu
ki , x− yki〉 ≥ −εki ∀x ∈ C,

which together with uki ∈ ∂2f(x̄ki , x̄ki) implies that

〈x̄ki − yki , x− yki〉 ≤ λki〈uki , x− yki〉+ εki

≤ λki(〈vki , x− yki〉+ 〈uki − vki , x− yki〉) + εki

≤ λkif(yki , x) + λki〈uki − vki , x− yki〉+ εki .

It follows that

1

λki
〈x̄ki − yki , x− yki〉 ≤ f(yki , x) + 〈uki − vki , x− yki〉+

1

λki
εki .
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For each fixed point x ∈ C, taking the limit as i → ∞ on both sides of the
last inequality, using limi→∞ ‖x̄ki − yki‖ = 0, limi→∞ ‖uki − vki‖ = 0, the
weak upper semicontinuity of the function f(·, y) and the boundedness of the
sequence {yk}, we get

f(p, x) ≥ 0 ∀x ∈ C.
It means that p ∈ Sol(EPs). �

Now we state and prove the main convergence result of the algorithm in the
following theorem.

Theorem 3.7. Let bifunction f : C × C → R satisfy the assumptions (T1)-
(T4). Then, the sequence {xk} generated by Algorithm 3.2 converges strongly
to a solution p ∈ Sol(EPs), where p = PSol(EPs)(x

0).

Proof. Set ξk = ‖xk−p‖2, αk = 2〈x0−p, xk+1−p〉 and βk = 2(λ0 +M)ηk+4εk.
To prove this theorem, we consider two following cases.

Case 1. Suppose that there exists k̄ ∈ N such that ξk+1 ≤ ξk for all k ≥ k̄.
Then, there exists the limit limk→∞ ξk ∈ [0,∞). By using the definition of xk+1

in Step 3, Condition 3 and the relation ‖u + v‖2 ≤ ‖u‖2 + 2〈v, u + v〉 for all
u, v ∈ H, we obtain

‖xk+1 − p‖2 = ‖(1− tk)(zk − p) + tk(x0 − p)‖2

≤ (1− tk)2‖zk − p‖2 + 2tk〈x0 − p, xk+1 − p〉

≤ ‖zk − p‖2 + 2tk〈x0 − p, xk+1 − p〉.

Therefore, from Lemma 3.4(ii), it follows that

‖xk+1 − p‖2 ≤ ‖xk − p‖2 −

[
1−

(
θk + λk

ν

λk+1

)2
]
‖yk − x̄k‖2

+ 2tk〈x0 − p, xk+1 − p〉+ 2(λ0 +M)ηk + 4εk,

which implies that

(15)

[
1−

(
θk + λk

ν

λk+1

)2
]
‖yk − x̄k‖2

≤ − ξk+1 + ξk + 2(λ0 +M)ηk + 4εk + tkQ0

for every k ≥ 0, where Q0 := sup{2〈x0−p, xk+1−p〉 : k = 0, 1, . . .} <∞ (since
the sequence {xk} is bound). Taking the limit as k →∞ on both sides of the
last inequality and using Lemma 3.4(i), Remark 3.3(iv) and Condition (3), we
obtain

(16) lim
k→∞

‖x̄k − yk‖ = 0.

Observe that

‖zk − x̄k‖ = ‖(1 + θk)yk − θkx̄k + λk(uk − vk)− x̄k‖
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≤ (1 + θk)‖yk − x̄k‖+ λk
ν

λk+1
‖yk − x̄k‖

=

(
1 + θk + λk

ν

λk+1

)
‖yk − x̄k‖,

which together with (16) implies that limk→∞ ‖zk− x̄k‖ = 0. By the definition
of xk+1 and boundedness of the sequence {zk}, we have

‖xk+1 − zk‖ = tk‖x0 − zk‖ ≤ tkQ1 → 0 as k →∞,
where Q1 = sup{‖x0 − zk‖ : k = 0, 1, . . .} < +∞. This together with
limk→∞ ‖zk − x̄k‖ = 0 implies that

(17) ‖xk+1 − x̄k‖ ≤ ‖xk+1 − zk‖+ ‖zk − x̄k‖ → 0 as k →∞.
By the definition of xk+1 in Step 3 and the inequality ‖u + v‖2 ≤ ‖u‖2 +
2〈v, u+ v〉 ∀u, v ∈ H, we get

‖xk+1 − p‖2 = ‖tk(x0 − p) + (1− tk)(zk − p)‖2

≤ (1− tk)2‖zk − p‖2 + 2tk(1− tk)〈x0 − p, xk+1 − p〉

≤ (1− tk)‖zk − p‖2 + 2tk〈x0 − p, xk+1 − p〉.

From the last inequality and Lemma 3.4(ii), it follows that

‖xk+1 − p‖2

≤ (1− tk)‖xk − p‖2 + 2tk〈x0 − p, xk+1 − p〉+ (1− tk)[2(λ0 +M)ηk + 4εk]

≤ (1− tk)‖xk − p‖2 + 2tk〈x0 − p, xk+1 − p〉+ 2(λ0 +M)ηk + 4εk,

which implies that

(18) ξk+1 ≤ (1− tk)ξk + tkαk + βk.

On the other hand, since the sequence {xk} is bounded, there exists a subse-
quence {xki+1} such that xki+1 ⇀ z as i→∞ and

(19) lim sup
k→∞

〈x0 − p, xk+1 − p〉 = lim
i→∞
〈x0 − p, xki+1 − p〉.

We deduce from (17) that x̄ki ⇀ z as i→∞. Applying limk→∞ ‖x̄k − yk‖ = 0
and Lemma 3.6, we get z ∈ Sol(EPs). From this, (19) and Lemma 2.2(i), it
follows that

lim sup
k→∞

αk = 2 lim
k→∞

〈x0 − p, xki+1 − p〉 = 2〈x0 − p, z − p〉 ≤ 0.

By using Lemma 2.4, the last inequality, lim supk→∞ αk ≤ 0 and Condition
(3), we deduce

lim
k→∞

ξk = lim
k→∞

‖xk − p‖2 = 0.

Thus, {xk} converges strongly to the solution p = PrSol(EPs)(x
0).

Case 2. We now assume that there is not k̄ ∈ N such that {ξk}∞k=k̄
is

monotonically decreasing. Then, there exists an integer k0 ≥ k̄ such that
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ξk0 ≤ ξk0+1. We have from Lemma 2.5 that there exists a subsequence {ξτ(k)}
of {ξk} such that

0 ≤ ξk ≤ ξτ(k)+1, ξτ(k) ≤ ξτ(k)+1 ∀k ≥ k0,

where τ(k) = max {i ∈ N : k0 ≤ i ≤ k, ξi ≤ ξi+1}. Using ξτ(k) ≤ ξτ(k)+1, ∀k ≥
k0 and (15), one has

0 ≤

[
1−

(
θτ(k) + λτ(k)

ν

λτ(k)+1

)2
]
‖yτ(k) − x̄τ(k)‖

≤ −ξτ(k)+1 + ξτ(k) + tτ(k)Q0 + 2(λ0 +M)ητ(k) + 4ετ(k)

≤ tτ(k)Q0 + 2(λ0 +M)ητ(k) + 4ετ(k).

Passing to the limit in the above unequal and taking into account Condition
(3), we obtain limk→∞ ‖yτ(k) − x̄τ(k)‖ = 0. By the same arguments as in the
Case 1, we can show that

(20) lim
n→∞

‖xτ(k)+1− x̄τ(k)‖ = lim
n→∞

‖x̄τ(k)−zτ(k)‖ = lim
n→∞

‖zτ(k)−yτ(k)‖ = 0.

Since {xτ(k)} is bounded, there exists a subsequence of {xτ(k)}, still denoted
by {xτ(k)+1}, which converges weakly to z. Following similar arguments as in
Case 1, we conclude that z ∈ Sol(EPs) and

(21) lim sup
k→∞

ατ(k) ≤ 0.

We deduce from (18) and ξτ(k) ≤ ξτ(k)+1, ∀k ≥ k0 that

tτ(k)ξτ(k) ≤ ξτ(k) − ξτ(k)+1 + tτ(k)ατ(k) + βτ(k) ≤ tτ(k)ατ(k) + βτ(k).

It is equivalent to ξτ(k) ≤ ατ(k) +
βτ(k)
tτ(k)

. From (21), Condition (3) and the last

inequality, it follows that

lim sup
k→∞

ξτ(k) ≤ lim sup
k→∞

ατ(k) ≤ 0,

which implies that limk→∞ ξτ(k) = 0. Using (2), we have√
ξτ(k)+1 = ‖xτ(k)+1 − p‖

≤ ‖xτ(k)+1 − x̄τ(k)‖+ ‖x̄τ(k) − p‖

≤ ‖xτ(k)+1 − x̄τ(k)‖+ ξτ(k).

Taking the limit as k →∞ on both sides of the last inequality and using (20),
we obtain limk→∞ ξτ(k)+1 = 0. This together with 0 ≤ ξk ≤ ξτ(k)+1 for all

k ≥ k0 implies that lim
k→∞

ξk = 0. Is means that the sequence {xk} converges

strongly to p ∈ Sol(EPs). The proof is complete. �
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4. Algorithm for multivalued variational inequality

In this section, by modifying the Algorithm 3.2, we develop a new algorithm
for solving the multivalued variational inequality problem (MV IPs) in real
Hilbert space.

Algorithm 4.1. Take arbitrary starting point x0 ∈ C, λ0 > 0, 0 < ν < 1, L >
L and control parameter sequences {tk}, {εk}, {ηk}, {λk}, {ρk} satisfying

0 < ρk,
+∞∑
k=0

ρk < +∞, tk ∈ (0, 1), lim
k→∞

tk = 0,
+∞∑
k=0

tk = +∞

εk ∈ (0, 1), lim
k→∞

εk
tk

= 0,
+∞∑
k=0

εk < +∞, ηk ∈ [0, 1), lim
k→∞

ηk
tk

= 0

+∞∑
k=0

ηk < +∞.

Step 1. (Apply Procedure A) Set x̄k := R(xk).
Step 2. Choose uk ∈ F (x̄k). If uk = 0, then Stop. Otherwise, find yk ∈ C

such that

(22)
〈
yk − x̄k + λku

k, x− yk
〉
≥ −εk ∀x ∈ C.

Step 3. Take vk ∈ B
(
uk, L‖x̄k − yk‖

)
∩ F (yk), where B

(
uk, L‖x̄k − yk‖

)
:=

{u ∈ H : ‖u − uk‖ ≤ L‖x̄k − yk‖}. If vk = 0, then Stop. Otherwise,
compute zk = (1 + θk)yk − θkx̄k + λk(uk − vk), where

θk =

{
min{ ηk

‖uk‖‖x̄k−yk‖ , ηk}, if x̄k − yk 6= 0,

ηk otherwise.

Compute xk+1 = tkx
0 + (1− tk)zk and

λk+1 =

{
min

{
ν‖x̄k−yk‖
‖uk−vk‖ , λk + ρk

}
, if uk − vk 6= 0,

λk + ρk otherwise,

Step 4. Let k := k + 1 and return to Step 1.

Obviously, if uk = 0, then x̄k is a solution of (MV IPs), and so Algorithm
4.1 stops at the k-th iteration. Hence, in the rest of this paper, we assume that
uk 6= 0 for all k ≥ 0. To get the strong convergence theorem of Algorithm 4.1,
we need the following assumptions of mapping F .

A1. The F is pseudomonotone and L-Lipschitz Hausdorff continuous on H,
i.e.,

ρ(F (x), F (y)) ≤ L‖x− y‖, ∀x, y ∈ C;

A2. The solution set Sol(MV IPs) of Problem (MV IPs) is nonempty;
A3. Iif xk ⇀ x̄ and uk ∈ F (xk), then there exists a subsequence {ukj} of

{uk} such that ukj ⇀ ū ∈ F (x̄);
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Regarding the assumption (A3), we recall the concept and characterization of
upper semicontinuity of a set-valued operator in topological spaces ([19]). Let
S1 and S2 be topological spaces. A set-valued operator with nonempty values
A : S1 → 2S2 is said to be upper semicontinuous if for all x ∈ S1 and for
every open set V containing A(x), there exists a neighborhood U of x such
that A(U) ⊂ V . It is well-known that if A is compact-valued, then A is upper
semicontinuous if and only if, for every net {xk} such that xk → x̄ and for all
uk ∈ A(xk), then exists a subsequence {ukj} of {uk} such that ukj → ū ∈ A(x̄)
(see [19, Lemma 2.1]). Hence, if F is weakly compact-valued and weakly upper
semicontinuous on H, then F satisfies the assumption (A3).

Next, we show that Algorithm 4.1 is strongly convergent in the following
theorem.

Theorem 4.2. Let F : H → 2H satisfy the assumptions (A1)-(A3). Then,
the sequence {xk} generated by Algorithm 4.1 converges strongly to a solution
p ∈ Sol(MV IPs), where p = PSol(MV IPs)(x

0).

Proof. Assume that ‖x̄k − yk‖ → 0 and {x̄ki} is a subsequence of {x̄k} con-
verging weakly to p. Then, the sequence {yki} also converges weakly to p. We
have from (22) that

〈yki − x̄ki + λkiu
ki , x− yki〉 ≥ −εki ∀x ∈ C,

which implies that

(23) 〈x̄ki − yki , x− yki〉+λki〈uki , yki − x̄ki〉 ≤ λki〈uki , x− x̄ki〉+ εki ∀x ∈ C.

By the assumption (A3), we can assume that uki ⇀ up ∈ F (p) as i→∞. For
each fixed point x ∈ C, passing to the limit for i tending to +∞ in (23) and
taking into account that limi→∞ ‖x̄ki − yki‖ = 0 = limi→∞ εki = 0, we obtain

lim inf
i→∞

〈uki , x− x̄ki〉 ≥ 0 ∀x ∈ C.

Let {γj} be a positive decreasing sequence and γj → 0 as j → ∞. Then, for
each j ∈ N, there exists a smallest positive integer hj such that〈

uhj , x− x̄hj
〉

+ γj ≥ 0 ∀x ∈ C.

Observe that {hj} is increasing. Setting %hj := 1

‖uhj ‖2
uhj , we have 〈uhj , %hj 〉 =

1 for every j ∈ N and〈
uhj , x+ γj%

hj − x̄hj
〉
≥ 0 ∀x ∈ C.

It follows from the above inequality and the pseudomonotonicity of F that

(24)
〈
ux+γj%

hj , x+ γj%
hj − x̄hj

〉
≥ 0 ∀x ∈ C, ux+γj%

hj ∈ F (x+ γj%
hj ).

If up = 0, then p is a solution of Problem (MV IPs). So, we can assume that
up 6= 0. It follows from lower weak semicontinuity of the norm mapping that
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0 < ‖up‖ ≤ lim infj→∞ ‖uhj‖, which implies

0 ≤ lim sup
j→∞

γj‖%hj‖ = lim sup
j→∞

γj
‖uhj‖

≤
lim supj→∞ γj

lim infj→∞ ‖uhj‖
= 0.

Consequently

(25) lim
j→∞

γj‖%hj‖ = 0.

For each ux ∈ F (x), using L-Lipschitz continuity of the mapping F , we can
always take ux̄hj ∈ F

(
x+ γj%

hj
)

such that

‖ux − ux̄hj ‖ ≤ ρ
(
F (x), F

(
x+ γj%

hj
))
≤ L‖γj%hj‖.

From (25) and the last inequality, it follows that

(26) lim
j→∞

‖ux − ux̄hj ‖ = 0.

Replacing ux+γj%
hj := ux̄hj ∈ F

(
x+ γj%

hj
)

into (24), we get〈
ux̄hj , x+ γj%

hj − x̄hj
〉
≥ 0 ∀x ∈ C.

Passing the limit as j → +∞ into the last inequality, using (25), (26) and
limj→∞ γj = 0, we have

〈ux, x− p〉 ≥ 0 ∀x ∈ C.

Set x̄i := 1
i x + (1 − 1

i )p ∈ C for all i > 0. Then, there exists ūi ∈ F (x̄i) such
that

0 ≤ 〈ūi, x̄i − p〉 = 〈ūi, 1

i
x+ (1− 1

i
)p− p〉 =

1

i
〈ūi, x− p〉 ∀x ∈ C.

By the assumption (A3), we can assume that {ūi} converges weakly to ūp ∈
F (p). Taking the limit as i→ +∞ on the last inequality, we have

〈ūp, x− p〉 ≥ 0 ∀x ∈ C.

It implies p ∈ Sol(MV IPs). Similar to the proof of Lemmas 3.4, 3.5 and
Theorem 3.7, we can prove that the sequence {xk} converges strongly to p. �

Remark 4.3. If F is bounded for some x ∈ H, then the above theorem’s result is
still true if (A3) is replaced by the following more general assumption: for every
xk ⇀ x̄ and uk ∈ F (xk) such that ukj ⇀ ū, then ū ∈ F (x̄). Indeed, since F (x)
is bounded for some x, there exist a constant Γ > 0 and a point x0 ∈ H such
that ‖x‖ ≤ Γ for every y ∈ F (x0). From L-Lipschitz continuity of the mapping
F , we can always choose ūk ∈ F (x0) such that ‖uk − ūk‖ ≤ L̄‖xk − x0‖. Then

‖uk‖ ≤ ‖uk − ūk‖+ ‖ūk‖ ≤ L̄‖xk − x0‖+ Γ < +∞.

It follows that {uk} is bounded. Which together with x̄ki ⇀ p implies that
there exists a subsequence {uKi} of {uki} such that uKi ⇀ up ∈ F (p). From
here, the proof is completely similar in the proof of the above theorem.
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5. Computational experiments

In this final, we present some numerical examples to illustrate proposed
algorithms. All programming is coded in Matlab R2016a and the program was
run on a PC Intel(R) Core(TM) i5-2430M CPU @ 2.40 GHz 4GB Ram. We
used the Optimization Toolbox (fmincon) to solve strongly convex subproblems
that are generated by proposed algorithms.

Example 5.1. Let H = Rn and C = {x ∈ Rn : 〈a, x〉 = q} (0 6= a ∈ Rn, q ∈
R). Consider Problem (EPs) with the bifunction f : Rn × Rn → R is defined
by

f(x, y) = max{1

2
‖y‖2 + q,

1

2
‖y‖2 + 〈a, y〉} −max{1

2
‖x‖2 + q,

1

2
‖x‖2 + 〈a, x〉}

+ α‖B(y − x)‖2‖x‖2.

By the same argument as in Remark 3.1, we can prove that f(x, y) is not
Lipschitz-type continuous on C. It is well-known that h(x) = max{ 1

2‖x‖
2 +

q, 1
2‖x‖

2 + 〈a, x〉} is convex, subdifferentiable on Rn and

∂h(x) =


{x+ a} if 〈a, x〉 > 0,

{x} if 〈a, x〉 > 0,

[x, x+ a] if 〈a, x〉 = q,

where [x, x+ a] = {tx+ (1− t)(x+ a) : t ∈ [0, 1]}. It follows that

ρ
(
∂2f(x, ·)(x), ∂2f(y, ·)(y)

)
= ‖x− y‖, ∀x, y ∈ C.

Therefore, f(x, y) satisfies assumptions (T1), (T2) and (T4) on C.

Test 1. In this test, we perform an experiment to show the numerical behaviors
of Algorithm 3.2 for solving Example 5.1 in space R5. The initial point is
x0 = (−34, 0, 0, 0, 0)> and the data is chosen as follows:

a = (1, 1, 2, 3,−1)>, q = −34, B =


1 2 3 8 0
−2 3 0 −1 −9
0 1 9 8 −3
6 −1 2 3 −5
−2 9 8 −6 8

 ,

λ0 = 0.5, ν = 0.5, L = 2, tk = 1
25k+1 , ρk = 1

(k+1)1.5 , εk = 0, ηk = 1
(25k+1)2.2 .

Note that if εk = 0, then yk of Step 2 is defined by

yk = PC(xk − λkuk).

The stopping criteria is Err = ‖xk − xk−1‖ ≤ ε with ε = 10−3. Figure 1 shows
convergent results of xk(i) − xk−1(i), i = 1, 2, . . . , 5, where xk(i) is the i-th
coordinate of xk.
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Figure 1. Convergence of Algorithm 3.2.

Example 5.2. Let H = Rn, b ∈ Rm and A be an m × n matrix. Consider
Problem (EPs) with the feasible C is a polyhedral convex set given by

C = {x ∈ Rn : Ax ≤ b},

and the bifunction f : Rn × Rn → R is defined as in Remark 3.1:

f(x, y) = 〈Px+Qy + q, y − x〉+ ‖B(y − x)‖2‖x‖2.

As shown in Remark 3.1, the f(x, y) satisfies the assumptions (T1), (T2) and
(T4) but is not Lipschitz-type continuous.

Test 2. Algorithm 3.2 combines the approximate projection method with
the Halpern iteration technique and uses self-adaptive step sizes. Hence, the
efficiency of the algorithm depends very much on the choice of the initial point
x0 and the parameters λk, tk, where λk is the step size of the approximate
projection on C of x̄k − λku

k and updated by formula (5) via the previous
iteration points and ρk; tk is the parameter in the Halpern iterative formula

xk+1 = tkx
0 + (1− tk)zk.

In this test, we apply Algorithm 3.2 to solve Example 5.2 with different given
initial points and parameters ρk, tk. We will use λ0 = 0.5, ν = 0.5, L =
‖P − Q‖ + 1, ρk = 1

k2+1 , ηk = εk = 0 for all k. The matrix B is chosen as in
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Test 1, the matrices P, Q, q are chosen as in [13,28]:

Q =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 , P =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 , q =


1
−2
−1
2
−1

 ,

and the matrices A, b are chosen as follows:

AT =


−1 1 −2 0 1 −1 1 −3 −2 −2
−1 −2 −1 −2 −1 −2 −3 3 4 2
−1 −1 −0.5 1 −1 −2 −4 −3 −5 2
0 2 1 −2 1 1 2 2 −3 1
−1 −0.5 2 1.5 −2 −1 3 2 5 0

 ,

bT = (0, 1, 0, 1,−1, 2, 2,−1,−1,−2).

The stopping criteria is Err = ‖xk−xk−1‖ ≤ ε with ε = 10−3 and the approx-
imate solution computed by Algorithm 3.2 is

x∗ = (2.3129, 0.5307, 0.7121, 0.2040, 1.1518)T .

The computation results are shown in Table 1. From this table, we can make
the following comments about the algorithm.

(a) The efficiency of the algorithm depends very much on the choice of
the parameters tk. For example, in this test, we have chosen tk = 1

5k+1 and

tk = 1
k+1 . In the first case, the program that encodes the proposed algorithm

runs much quickly than in the second case.
(b) The speed of our algorithm is less affected by the parameters ρk. This

shows that the parameter λk is mostly updated based on previous iteration
points.

(c) The program that encodes the proposed algorithm runs quickly if the
initial point x0 is close to a solution of the problem. Conversely, if the initial
point x0 is far from a solution, then the program takes much more time.

Test 3. In this test, we solve Example 5.2 with the bifunction:

f(x, y) = 〈Px+Qy + q, y − x〉
and perform some experiments to show the numerical behaviors of Algorithm
3.2, Halpern subgradient method (HSM) in [27], Halpern subgradient ex-
tragradient method (HSEM) in [13] and the extragradient-viscosity method
(EVM) in [30]. Calculations are done with the following data:

• The matrices P, Q, q, A, b and x0 are chosen as in [13, 27], in detail,
A is a matrix of the size m× n with its entries generated randomly in
[−2, 2], elements of b generated randomly in [1, 3]; the matrix P = Q−T
where the symmetric positive semidefinite matrix Q is made by using
Q1 and a random orthogonal matrix, the negative semidefinite T is
made byQ2 and another random orthogonal matrix; Q1, Q2 are random
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Table 1. The comparative results for different starting points
and parameters.

Parameters Algorithm 3.2
Init.point x0 tk ρk Iterations. CPU times

(1, 3, 1, 1,−2)> 1
k+1

1
k2+1 55 2.0904

(1, 3, 1, 1,−2)> 1
2k+1

1
k2+1 40 1.6124

(1, 3, 1, 1,−2)> 1
3k+1

1
k2+1 34 1.5508

(1, 3, 1, 1,−2)> 1
4k+1

1
k2+1 30 1.4344

(1, 3, 1, 1,−2)> 1
5k+1

1
k2+1 27 1.1856

(1, 3, 1, 1,−2)> 1
5k+1

1
k4+1 27 1.1544

(1, 3, 1, 1,−2)> 1
5k+1

1
k6+1 27 1.3572

(1, 3, 1, 1,−2)> 1
5k+1

1
k8+1 27 1.3260

(1, 3, 1, 1,−2)> 1
5k+1

1
k10+1 29 1.3480

(2.4, 0.6, 1, 0.25, 1.3)> 1
5k+1

1
k2+1 18 0.9828

(4, 6, 5, 3, 7)> 1
5k+1

1
k2+1 38 1.8408

(7, 8, 6, 6, 13)> 1
5k+1

1
k2+1 50 2.2308

(11, 13, 12, 21, 24)> 1
5k+1

1
k2+1 76 3.2448

diagonal matrices with their diagonal elements in [1,m] and [−m, 0],
respectively; the initial point x0 generated randomly in [0, 1].

• Alg. 3.2: λ0 = 0.5, ν = 0.5, L = ‖P − Q‖ + 1, tk = 1
5k+1 , ρk = 1

k2+1 ,
ηk = εk = 0 for all k.
• HSM : L = ‖P −Q‖, λk = 1

2L
, εk = 0 and αk = 1

55k+1 for all k.

• HSEM : L = ‖P −Q‖, λk = 1
2L

and αk = 1
5k+1 for all k.

• EVM : F (x) = x−x0, αk = 1
5k+1 , S = I, where I is identify mapping.

The obtained numerical results in this test are shown in Table 2. In the light
of this table, we present the following simple observation:

Our algorithm in general works well and has competitive advantages over
other known ones. Specifically, Algorithm 3.2 has a smaller number of itera-
tions and computation time than (HSEM) and (HSM). The average number
of iterations in (EVM) is smaller than in Algorithm 3.2 but has a more ex-
pensive computation time. Reasons to explain the above statements are that
our algorithm uses only one projection and self-adaptive step size at each iter-
ation, while the rest of the algorithms use constant step sizes, in addition, two
projections are used in the algorithms (HSEM) and (EVM).

Example 5.3. We consider the multivalued variational inequality problem
(MV IPs) with the multivalued mapping F is defined by

F = {h(t)Mx : t ∈ D}, ∀x ∈ Rn,
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Table 2. The comparative results where the stopping crite-
rion is ‖xk+1 − xk‖ ≤ 10−3.

m = 50
Alg. 3.2 HSEM EVM HSM

n Iter. CPU-times Iter. CPU-times Iter. CPU-times Iter. CPU-times
2 19 50.3727 25 67.9540 20 105.7999 92 92.6334
5 44 64.8028 57 87.1422 34 99.4974 106 128.9378
10 59 59.1400 77 77.7353 60 110.0587 143 146.1085
20 132 84.6461 140 111.1663 108 123.4280 166 182.3783

m = 100
Alg. 3.2 HSEM EVM HSM

n Iter. CPU-times Iter. CPU-times Iter. CPU-times Iter. CPU-times
2 27 83.6009 32 96.8454 22 134.6913 119 145.1121
5 46 96.1377 60 105.0667 43 145.1589 127 163.3624
10 68 77.5481 64 118.0629 60 167.0157 176 232.4332
20 194 168.8243 371 337.1650 101 227.1357 268 248.7158

where M = AA> + B + Q, A is a matrix of order n, B is an n × n skew-
symmetric matrix, Q is an n×n positive diagonal matrix and h is a continuous
mapping from a nonempty compact subset D of R to R such that h(t) > 0 for
all t ∈ D; It is proved in [3] that F is pseudomonotone and b‖M‖-Lipschitz
Hausdorff continuous.

Test 4. Let all entries A,B,Q and x0 be randomly generated by using the
commands A = 2∗n∗ rand(n, n)−n;B = skewdec(n, 1);Q = diag(1 : n);x0 =
rand(n, 1). This test performs computational experiments to compare Algo-
rithm 4.1 with the Halpern projection method (HPM) in [3] and the cutting
hyperplane method (CHM) in [2]. The function f(t), feasible set C and pa-
rameters of the algorithms are chosen as follows:

• h(t) = 3t2 − 2t+ 1, D = [0, 1],

C := {x = (x1, . . . , xn) ∈ Rn : 0 ≤ xk ≤ n ∀k = 1, . . . , n, ‖x‖ ≤ 2}.

• Alg. 4.1: λ0 = 0.5, ν = 0.5, L = 2‖M‖ + 1, tk = 1
3k+2000 , ρk = 1

k2+1 ,
εk = ηk = 0 for all k.

• HPM : αk = 1
3k+2000 , L̄ = 2‖M‖+ 1, λk = 1

8‖M‖+5 .

• CHM : σ = 5, c = 1
2σ+1000 and γ = 1.

Figure 2 shows the test results with n = 10 and Table 3 shows the test results
with the choice of different dimensions n. From Figure 2 and Table 3, we see
that the CPU time and the number iterations of our algorithm are less than of
the algorithms (HPM) and (CHM). This assertion is reasonable because the
algorithms (HPM) and (CHM) use projections with constant step sizes and
at each iteration Algorithm (CHM) must perform two projections on C.
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Figure 2. Convergence of Algorithm 4.1 with the tolerance 10−3.

Table 3. The comparative results for Test 3.

Iter CPU-times
Dim. n Alg. 4.1 HPM CHM Alg. 4.1 HPM CHM

5 62 195 275 3.7128 9.6253 37.6274
10 59 185 512 5.9748 13.4005 113.0227
15 100 309 1028 11.8249 27.8930 309.4748
20 111 462 1346 17.8777 50.0607 599.2466
25 122 369 1065 24.4298 46.6911 611.0247
30 121 399 1239 28.2050 57.7360 773.9366
35 99 365 620 25.1162 60.3724 405.1034
40 138 453 888 37.1282 87.4854 583.8493
50 127 363 941 41.2467 85.9410 722.2513
70 123 384 812 79.1705 193.1604 875.0264
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