DOI QR코드

DOI QR Code

The Effect of Data-Guided Artificial Wind in a Yacht VR Experience on Positive Affect

요트 VR 체험에서 데이터 기반의 인공풍이 정적 정서에 미치는 영향

  • Received : 2022.06.15
  • Accepted : 2022.07.06
  • Published : 2022.07.26

Abstract

The sense of touch by natural wind is one of the most common feels that every person experiences in daily life. However, it has been rarely studied how natural wind can be reproduced in a VR environment and whether the multisensory contents equipped with artificial winds do improve human emotion or not. To address these issues, we first propose a wind reproduction VR system guided by video and wind capture data and also study the effect of the system on positive affect. We collected wind direction and speed data together with a 360-degree video on a yacht. These pieces of data were used to produce a multisensory VR environment by our wind reproduction VR system. 19 college students participated in the experiments, where the Korean version of Positive and Negative Affect Schedule (K-PANAS) was introduced to measure their emotions. Through the K-PANAS, we found that 'inspired' and 'active' emotions increase significantly after experiencing the yacht VR contents with artificial wind. Our experimental results also show that another emotion, 'interested', is most notably affected depending on the presence of the wind. The presented system can be effectively used in various VR applications such as interactive media and experiential contents.

자연풍에 의한 감각은 대부분의 사람들이 일상 생활에서 경험하는 가장 흔한 느낌 중 하나이다. 그러나 가상현실 환경에서 자연풍이 어떻게 재현될 수 있는지, 인공풍이 결합된 다감각 콘텐츠가 인간의 정서를 개선하는지에 대한 연구는 거의 수행되지 않았다. 이러한 문제를 다루기 위해, 본 연구는 녹화된 영상 및 바람 데이터를 기반으로 하는 Wind Reproduction VR System 을 제안하고, 이 시스템이 사용자의 정적 정서에 주는 영향을 확인하는 연구를 진행한다. 실험을 위해 요트상에서 360 도 영상과 함께 풍향 및 풍속 데이터를 수집했다. 수집한 데이터는 제안한 시스템을 통해 다감각 VR 환경을 만드는데 사용되었다. 총 19 명의 대학생들이 실험에 참여했으며, K-PANAS(Korean version of Positive and Negative Affect Schedule)를 통하여 참가자들의 정서 변화를 측정했다. 실험 결과, 인공풍이 추가된 요트 VR 콘텐츠 체험 이후 참가자의 '영감을 받다', '활기차다' 정서가 유의하게 증가하였다. 뿐만 아니라, 바람의 유무에 따라 '흥미롭다' 정서가 가장 큰 영향을 받는 것으로 확인하였다. 제안한 시스템은 인터랙티브 미디어, 체험형 콘텐츠와 같은 다양한 VR 응용 프로그램에서 효과적으로 활용될 수 있다.

Keywords

Acknowledgement

이 논문은 과학기술정보통신부의 소프트웨어중심대학 지원사업 (2017-0-00130)의 지원을 받아 수행하였음.

References

  1. N. S. Ali, M. Nasser, "Review of virtual reality trends (previous, current, and future directions), and their applications, technologies and technical issues," ARPN Journal of Engineering and Applied Sciences, 12(3), pp. 783-789, 2017.
  2. G. M. Kim, J. A. Ahn, "A Study on the Activation of Virtual Space Using Metaverse Zepeto App," Journal of Cultural Product & Design, 66, pp. 375-383, 2021.
  3. J. H. Lee, "A Study on the Revitalization of Virtual Reality-Based Education," JOURNAL OF THE KOREAN SOCIETY DESIGN CULTURE, 25(1), pp. 357-366, 2019. https://doi.org/10.18208/ksdc.2019.25.1.357
  4. D. Harley, A. Verni, M. Willis, A. Ng, L. Bozzo, and A. Mazalek, "Sensory VR: Smelling, Touching, and Eating Virtual Reality," In Proceedings of the Twelfth International Conference on Tangible, Embedded, and Embodied Interaction (TEI '18), pp. 386-397, 2018.
  5. M. Azmandian, M. Hancock, H. Benko, E. Ofek, and A. D. Wilson, "Haptic retargeting: Dynamic repurposing of passive haptics for enhanced virtual reality experiences," In Proceedings of the 2016 chi conference on human factors in computing systems, pp. 1968-1979, 2016.
  6. B. Serrano, R. M. Banos, and C. Botella, "Virtual reality and stimulation of touch and smell for inducing relaxation: A randomized controlled trial," Computers in Human Behavior 55, pp. 1-8, 2016. https://doi.org/10.1016/j.chb.2015.08.007
  7. D. Narciso, M. Bessa, M. Melo and J. Vasconcelos-Raposo, "Virtual Reality for training - The impact of smell on presence, cybersickness, fatigue, stress and knowledge transfer," 2019 International Conference on Graphics and Interaction (ICGI), pp. 115-121, 2019.
  8. R. B. Dieser, C. R. Edginton, and R. Ziemer, "Decreasing patient stress and physician/medical workforce burnout through health care environments: uncovering the serious leisure perspective at Mayo Clinic's Campus in Rochester, Minnesota," In Mayo Clinic Proceedings, 92, pp. 1080-1087, 2017. https://doi.org/10.1016/j.mayocp.2017.03.017
  9. H. Park, J. Lee, "A Validation Study of Korea Positive and Negative Affect Schedule: The PANAS Scales," Korean Journal of Clinical Psychology, 35(4), pp. 617-641, 2016.
  10. G. Giraldo, M. Servieres, and G. Moreau, "Perception of multisensory wind representation in virtual reality," In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 45-53, 2020.
  11. A. Lehmann, C. Geiger, B. Woldecke, and J. Stocklein, "Poster: Design and evaluation of 3D content with wind output," In 2009 IEEE Symposium on 3D User Interfaces, pp. 151-152, 2009.
  12. F. Hulsmann, J. Frohlich, N. Mattar, and I. Wachsmuth, "Wind and warmth in virtual reality: implementation and evaluation," In Proceedings of the 2014 Virtual Reality International Conference, pp. 1-8, 2014.
  13. S. Cardin, D. Thalmann, and F. Vexo, "Head mounted wind," In proceeding of the 20th annual conference on Computer Animation and Social Agents (CASA2007), pp. 101-108, 2007.
  14. D. Lim, Y. Lee, Y. Cho, T. Ryoo, and D. Han, "A Study on the Reduction in VR Cybersickness using an Interactive Wind System," Journal of the Korea Computer Graphics Society, 27(3), pp. 43-53, 2021. https://doi.org/10.15701/kcgs.2021.27.3.43
  15. J. Eijkemans, "Motion sickness in a virtual reality cycling simulation," Bachelor's thesis, University of Twente, 2019.
  16. T. Song, W. Zheng, C. Lu, Y. Zong, X. Zhang, and Z. Cui, "MPED: A multi-modal physiological emotion database for discrete emotion recognition," IEEE Access 7, pp. 12177-12191. 2019. https://doi.org/10.1109/access.2019.2891579
  17. R. Somarathna, T. Bednarz, and G. Mohammadi, "Virtual Reality for Emotion Elicitation--A Review," arXiv e-prints, arXiv2111, 2021.
  18. A. Dey, H. Chen, M. Billinghurst, and R. W. Lindeman, "Effects of manipulating physiological feedback in immersive virtual environments," Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play, pp. 101-111, 2018.
  19. M. M. Bradley and P. J. Lang, "Measuring emotion: the self-assessment manikin and the semantic differential," Journal of behavior therapy and experimental psychiatry, 25(1), pp. 49-59, 1994. https://doi.org/10.1016/0005-7916(94)90063-9
  20. A. M. Isen, "Positive affect, cognitive processes, and social behavior," Advances in experimental social psychology. 20, pp. 203-253, 1987. https://doi.org/10.1016/S0065-2601(08)60415-3
  21. R. S. Lazarus, A. D. Kanner, and S. Folkman, "Emotions: A cognitive-phenomenological analysis," Theories of emotion, pp. 189-217, 1980.
  22. B. L. Fredrickson and R. W. Levenson, "Positive emotions speed recovery from the cardiovascular sequelae of negative emotions," Cognition & emotion, 12(2), pp. 191-220, 1998. https://doi.org/10.1080/026999398379718
  23. A. A. Stone, D. S. Cox, H. Valdimarsdottir, L. Jandorf, and J. M. Neale, "Evidence that secretory IgA antibody is associated with daily mood," Journal of personality and social psychology, 52(5), p. 988, 1987. https://doi.org/10.1037/0022-3514.52.5.988
  24. M. P. Lawton, M. S. Moss, L. Winter, and C. Hoffman, "Motivation in later life: personal projects and well-being," Psychology and aging, 17(4), p.539, 2002. https://doi.org/10.1037/0882-7974.17.4.539
  25. A. S. Schreiner, E. Yamamoto, and H. Shiotani, "Positive affect among nursing home residents with Alzheimer's dementia: the effect of recreational activity," Aging & mental health, 9(2), pp. 129-134, 2005. https://doi.org/10.1080/13607860412331336841
  26. H. H. Lee, E. J. Kim, and M. K. Lee, "A validation study of Korea positive and negative affect schedule: The PANAS scales," Korean Journal of Clinical Psychology, 22(4), pp. 935-946, 2003.
  27. D. Watson, A. Clark, and A. Tellegen, "Development and validation of brief measures of positive and negative affect: The PANAS scales," Journal of personality and social psychology, 54(6), pp. 1063-1070, 1988. https://doi.org/10.1037/0022-3514.54.6.1063
  28. A. Tellegen, "Structures of mood and personality and their relevance to assessing anxiety with an emphasis on self-report," Anxiety and the anxiety disorders, pp. 681-706, 1985.
  29. S. Choi, S. Kim, N. Lee, K. Lee, and H. Ko, "Development of VR Healing Content 'NORNIR' Using Color Therapy," Journal of the Korea Computer Graphics Society, 26(3), pp. 143-153, 2020. https://doi.org/10.15701/kcgs.2020.26.3.143
  30. A. Kale, N. R. Kamdi, P. Kale, and A. A. Yeotikar, "A review paper on variable frequency drive," Int. Res. J. Eng. Technol, 4(1), pp. 1281-1284, 2017.
  31. V. Jamuna and S. Reddy, "Modeling and Speed Control of Induction Motor Drives Using Neural Networks," The Annals of "Dunarea de Jos "University of Galati. Fascicle III, Electrotechnics, Electronics, Automatic Control, Informatics, 33(1), pp. 40-49, 2010.
  32. B. O. Omijeh, D. C. Idoniboyeobu, and G. O. Ajabuego, "Artificial Neural Network Based Induction Motor Speed Controller," International Journal of Electronics Communication and Computer Engineering, 6(1), 2015.