DOI QR코드

DOI QR Code

Predictive charge control for LLC resonant converters

  • Chen, Siqiang (School of Electric Power, South China University of Technology) ;
  • Du, Guiping (School of Electric Power, South China University of Technology) ;
  • Lei, Yanxiong (School of Electric Power, South China University of Technology) ;
  • Li, Tuhuan (School of Electric Power, South China University of Technology)
  • 투고 : 2021.10.01
  • 심사 : 2022.01.21
  • 발행 : 2022.05.20

초록

A predictive charge control method based on an LLC resonant converter is proposed in this paper. The input charge in each cycle is reflected in the change of the resonant capacitor voltage. The threshold is set to compare it with the resonant capacitor voltage to control the input charge. Based on an LLC discrete predictive model, the predictive charge control predicts the threshold of the resonant capacitor voltage to regulate the output voltage. When compared with existing control methods, the predictive charge control has the advantages of an intuitive concept, a strong robustness, a simple implementation, and a simple model. It has excellent dynamic performance under various working conditions. The resonant tank can enter the steady state within one cycle without affecting the steady-state performance of the system. Through a mode analysis, this paper analyzes the proposed predictive charge control in detail. A 500 W LLC resonant converter prototype is built to verify the proposed method. Results show that both the output voltage and the resonant tank return to the steady state without fluctuations in one cycle during the processes of input voltage change and load switching.

키워드

과제정보

This work was supported by the Guangdong Provincial Natural Science Research Team Project: New Energy Efficient Electrical Energy Conversion, 2017B030312001.

참고문헌

  1. Sun, W., Xing, Y., Wu, H., et al.: Modified high-efficiency LLC converters with two split resonant branches for wide input-voltage range applications. IEEE Trans. Power Electron. 33(9), 7867-7879 (2018) https://doi.org/10.1109/tpel.2017.2773484
  2. Khan, S., Sha, D., Jia, X.: Resonant LLC DC-DC converter employing fixed switching frequency based on dual-transformer with wide input-voltage range. IEEE Trans. Power Electron. 36(1), 607-616 (2021) https://doi.org/10.1109/tpel.2020.3001161
  3. Lin, R.L., Huang, L.: Efficiency improvement on LLC resonant converter using integrated LCLC resonant transformer. IEEE Trans. Ind. Appl. 54(2), 1756-1764 (2018) https://doi.org/10.1109/tia.2017.2771728
  4. Jeong, Y., Kim, J.K., Lee, J.B., et al.: An asymmetric half-bridge resonant converter having a reduced conduction loss for DC/DC power applications with a wide range of low input voltage. IEEE Trans. Power Electron. 32(10), 7795-7804 (2017) https://doi.org/10.1109/TPEL.2016.2639069
  5. Sun, X., Shen, Y., Zhu, Y., et al.: Interleaved boost-integrated LLC resonant converter with fixed-frequency PWM control for renewable energy generation applications. IEEE Trans. Power Electron. 30(8), 4312-4326 (2015) https://doi.org/10.1109/TPEL.2014.2358453
  6. Yuan, Y., Mei, X.: Five-level LLC resonant converter suitable for wide output voltage range. Electron. Lett. 54(20), 1187-1189 (2018) https://doi.org/10.1049/el.2018.6266
  7. Shahzad, M.I., Iqbal, S., Taib, S.: A wide output range HB-2LLC resonant converter with hybrid rectifier for PEV battery charging. IEEE Trans. Transp. Electrification. 3(2), 520-531 (2017) https://doi.org/10.1109/TTE.2017.2698243
  8. Wu, H., Li, Y., Xing, Y.: LLC resonant converter with semiactive variable-structure rectifier (SA-VSR) for wide output voltage range application. IEEE Trans. Power Electron. 31(5), 3389-3394 (2016) https://doi.org/10.1109/TPEL.2015.2499306
  9. Ta, L., Dao, N., Lee, D.: High-efficiency hybrid LLC resonant converter for on-board chargers of plug-in electric vehicles. IEEE Trans. Power Electron. 35(8), 8324-8334 (2020) https://doi.org/10.1109/tpel.2020.2968084
  10. Jeong, Y., Lee, M.S., Park, J.D., et al.: Hold-up time compensation circuit of half-bridge LLC resonant converter for high light-load efficiency. IEEE Trans. Power Electron. 35(12), 13126-13135 (2020) https://doi.org/10.1109/tpel.2020.2992751
  11. Musavi, F., Craciun, M., Gautam, D.S., et al.: An LLC resonant DC-DC converter for wide output voltage range battery charging applications. IEEE Trans. Power Electron. 28(12), 5437-5445 (2013) https://doi.org/10.1109/TPEL.2013.2241792
  12. Chang, C.-H., Lin, C., Ku, C.-W.: A high-efficiency solar array simulator implemented by an LLC resonant DC-DC converter. IEEE Trans. Power Electron. 28(6), 3039-3046 (2013) https://doi.org/10.1109/TPEL.2012.2205273
  13. Hayashi, Y.: Power density design of SiC and GaN DC-DC converters for 380 V DC distribution system based on series-parallel circuit topology. In: Proceedings IEEE Applied Power Electronics Conference and Exposition. 1601-1606 (2013)
  14. Dujic, D., Zhao, C.H., Mester, A., et al.: Power electronic traction transformer-low voltage prototype. IEEE Trans. Power Electron. 28(12), 5522-5534 (2013) https://doi.org/10.1109/TPEL.2013.2248756
  15. Haga, H., Kurokawa, F.: Modulation method of a full-bridge three-level LLC resonant converter for battery charger of electrical vehicles. IEEE Trans. Power Electron. 32(4), 2498-2507 (2017) https://doi.org/10.1109/TPEL.2016.2570800
  16. Fei, C., Li, Q.: Digital implementation of adaptive synchronous rectifier (SR) driving scheme for high-frequency LLC converters with microcontroller. IEEE Trans. Power Electron. 33(6), 5351-5361 (2018) https://doi.org/10.1109/tpel.2017.2731942
  17. Yang, Z., Wang, J., Ma H., et al.: A wide output voltage LLC series resonant converter with hybrid mode control method. In: Proceedings 2015 IEEE 2nd International Future Energy Electronics Conference, 1-5 (2015)
  18. Mumtahina, U., Wolfs, P.J.: Multimode optimization of the phase-shifted LLC series resonant converter. IEEE Trans. Power Electron. 33(12), 10478-10489 (2018) https://doi.org/10.1109/tpel.2018.2803741
  19. Sun, X., Li, X., Shen, Y., et al.: Dual-bridge LLC resonant converter with fixed-frequency PWM control for wide input applications. IEEE Trans. Power Electron. 32(1), 69-80 (2017) https://doi.org/10.1109/TPEL.2016.2530748
  20. Wang, H., Li, Z.: A PWM LLC type resonant converter adapted to wide output range in PEV charging applications. IEEE Trans. Power Electron. 33(5), 3791-3801 (2018) https://doi.org/10.1109/tpel.2017.2713815
  21. Inam, W., Afridi, K.K., Perreault, D.J.: Variable frequency multiplier technique for high-efficiency conversion over a wide operating range. IEEE Trans. Emerg. Sel. Topics Power Electron. 4(2), 335-343 (2016) https://doi.org/10.1109/JESTPE.2015.2461615
  22. Jiang, T., Zhang, J., Wu, X., et al.: A bidirectional three-level LLC resonant converter with PWAM control. IEEE Trans. Power Electron. 31(3), 2213-2225 (2016) https://doi.org/10.1109/TPEL.2015.2438072
  23. Ryu, S.H., Kim, D.H., Kim, M.J., et al.: Adjustable frequency-duty-cycle hybrid control strategy for full-bridge series resonant converters in electric vehicle chargers. IEEE Trans. Ind. Elec. 61(10), 5354-5362 (2014) https://doi.org/10.1109/TIE.2014.2300036
  24. Kim, B.C., Park, K.B., Moon, G.W.: Asymmetric PWM control scheme during hold-up time for LLC resonant converter. IEEE Trans. Ind. Elec. 59(7), 2992-2997 (2012) https://doi.org/10.1109/TIE.2011.2166237
  25. Yang, C. H., Liang, T. J., Chen, K., et al.: LLC resonant converter controller with novel light load control. In: Proceedings 2014 International Power Electronics and Application Conference and Exposition, 131-135 (2014)
  26. Chang, C., Chang, E., Cheng, C., et al.: Small signal modeling of LLC resonant converters based on extended describing function. In: Proceedings 2012 International Symposium on Computer, Consumer and Control, 365-368 (2012)
  27. Kang, S.-W., Kim, H.-J., Cho, B.-H.: Adaptive voltage-controlled oscillator for improved dynamic performance in LLC resonant converter. IEEE Trans. Ind. Appl. 52(2), 1652-1659 (2016) https://doi.org/10.1109/TIA.2015.2506147
  28. Jang, J., Joung, M., Choi, B., et al.: Dynamic analysis and control design of optocoupler isolated LLC series resonant converters with wide input and load variations. In: Proceedings 2009 IEEE Energy Conversion Congress and Exposition, 758-765 (2009)
  29. Jang, J., Joung, M., Choi, S., et al.: Current mode control for LLC series resonant dc-to-dc converters. In: Proceedings 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition, 21-27 (2011)
  30. Jang, J., Kumar, P. S., Kim, D., et al.: Average current-mode control for LLC series resonant dc-to-dc converters. In: Proceedings of The 7th International Power Electronics and Motion Control Conference, 923-930 (2012)
  31. Ma, H., Liu, Q., Guo, J.: A sliding-mode control scheme for LLC resonant DC/DC converter with fast transient response. In: Proceedings IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society, 162-167 (2012)
  32. Oruganti, R., Yang, J.J., Lee, F.C.: Implementation of optimal trajectory control of series resonant converter. IEEE Trans. Power Electron. 3(3), 318-327 (1988) https://doi.org/10.1109/63.17950
  33. Feng, W., Lee, F.C., Mattavelli, P.: Simplified optimal trajectory control (SOTC) for LLC resonant converters. IEEE Trans. Power Electron. 28(5), 2415-2426 (2013) https://doi.org/10.1109/TPEL.2012.2212213
  34. Fei, C., Lee, F. C., Li, Q.: Multi-step Simplified Optimal Trajectory Control (SOTC) for fast transient response of high frequency LLC converters. In: Proceedings 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2064-2071 (2015)
  35. Feng, W., Lee, F.C., Mattavelli, P.: Optimal trajectory control of burst mode for LLC resonant converters. IEEE Trans. Power Electron. 28(1), 457-466 (2013) https://doi.org/10.1109/TPEL.2012.2200110
  36. Feng, W., Lee, F.C.: Optimal trajectory control of LLC resonant converters for soft start-up. IEEE Trans. Power Electron. 29(3), 1461-1468 (2014) https://doi.org/10.1109/TPEL.2013.2261094
  37. Hu, Z., Liu, Y.F., Sen, P.C.: Bang-bang charge control for LLC resonant converters. IEEE Trans. Power Electron. 30(2), 1093-1108 (2015) https://doi.org/10.1109/TPEL.2014.2313130