DOI QR코드

DOI QR Code

Computationally efficient direct predictive speed control of PMSMs fed by three-level NPC convertors with guaranteed stability

  • Saberi, Sajad (Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology) ;
  • Rezaie, Behrooz (Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology)
  • Received : 2021.08.30
  • Accepted : 2022.03.21
  • Published : 2022.07.20

Abstract

Direct predictive speed control (DPSC) using a finite control set MPC (FCS-MPC) is a popular control method for multi-level converters. In FCS-MPC-based designs, there are two key issues. First, when the number of switching states increases, the computational burden dramatically increases, which makes real-time implementation impractical when compared to traditional modulation methods such as field-oriented control (FOC). The issue of stability is another key concern with DPSC. In the present study, the speed of a permanent magnet synchronous motor (PMSM) fed by a three-level neutral-point clamped (3L-NPC) convertor is controlled using a computationally efficient DPSC technique with hexagon candidate region (HCR). Back-stepping is also used in the proposed method to generate the q-axis current reference and continuous d-q axis control voltage for the DPSC to guarantee the stability of the closed loop system using the Lyapunov stability theorem. Furthermore, in HCR, the continuous control law checks the voltage vectors while only passing the vectors that do not jeopardize the stability of the system. As a result, stability is taken into account and also the number of voltage candidates for FCS-MPC decreases significantly. This in turn leads to reductions in the computational burden. The system is simulated in MATLAB/Simulink to validate the efficiency of the proposed method.

Keywords

References

  1. Shi, S., Lo, K.L.: An overview of wind energy development and associated power system reliability evaluation methods. In: 2013 48th International Universities' Power Engineering Conference (UPEC), IEEE, Dublin (2013).
  2. Thongam, J.S., Tarbouchi, M., Beguenane, R., Okou, A.F., Merabet, A., Bouchard, P.: An optimum speed MPPT controller for variable speed PMSG wind energy conversion systems. In: IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society, pp. 4293-4297, IEEE, Montreal, QC (2012).
  3. Dastres, H., Mohammadi, A., Rezaie, B.: Adaptive robust control design to maximize the harvested power in a wind turbine with input constraint. J. Renew. Energy Environ. 7(4), 30-43 (2020)
  4. Gonzalez-Cagigal, M.A., Rosendo-Macias, J.A., Gomez-Exposito, A.: Parameter estimation of wind turbines with PMSM using cubature Kalman filters. IEEE Trans. Power Syst. 35(3), 1796-1804 (2020) https://doi.org/10.1109/tpwrs.2019.2945778
  5. Barradi, Y., Zazi, K., Zazi, M., Khaldi, N.: Control of PMSG based variable speed wind energy conversion system connected to the grid with PI and ADRC approach. Int. J. Power Electron. Drive Syst. (IJPEDS) 11(2), 953 (2020) https://doi.org/10.11591/ijpeds.v11.i2.pp953-968
  6. Sain, C., Banerjee, A., Biswas, P.K.: Modelling and comparative dynamic analysis due to demagnetization of a torque controlled permanent magnet synchronous motor drive for energy-efficient electric vehicle. ISA Trans. 97, 384-400 (2020) https://doi.org/10.1016/j.isatra.2019.08.008
  7. Saberi, S., Rezaie, B.: Sensorless FCS-MPC-based speed control of a permanent magnet synchronous motor fed by 3-level NPC. J. Renew. Energy Environ. 8(2), 13-20 (2021)
  8. Boldea, I.: Control issues in adjustable-speed drives. IEEE Ind. Electron. Mag. 2(3), 32-50 (2008) https://doi.org/10.1109/MIE.2008.928605
  9. Errouissi, R., Ouhrouche, M., Chen, W.H., Trzynadlowski, A.M.: Robust cascaded nonlinear predictive control of a permanent magnet synchronous motor with antiwindup compensator. IEEE Trans. Ind. Electron. 59(8), 3078-3087 (2012) https://doi.org/10.1109/TIE.2011.2167109
  10. Alshawish, A. M., Eshtaiwi, S.M., Shojaeighadikolaei, A., Ghasemi, A., Ahmadi, R.: Sensorless control for permanent magnet synchronous motor (PMSM) using a reduced order observer. In: 2020 IEEE Kansas Power and Energy Conference (KPEC), IEEE, Manhattan, KS, USA (2020).
  11. Kakosimos, P., Abu-Rub, H.: Predictive speed control with short prediction horizon for permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 33(3), 2740-2750 (2018) https://doi.org/10.1109/TPEL.2017.2697971
  12. Xie, W., Wang, X., Wang, F., Xu, W., Kennel, R., Gerling, D.: Dynamic loss minimization of finite control set-model predictive torque control for electric drive system. IEEE Trans. Power Electron. 31(1), 849-860 (2016) https://doi.org/10.1109/TPEL.2015.2410427
  13. Habibullah, M., Lu, D.D., Xiao, D., Rahman, M.F.: Finite-state predictive torque control of induction motor supplied from a three-level NPC voltage source inverter. IEEE Trans. Power Electron. 32(1), 479-489 (2017) https://doi.org/10.1109/TPEL.2016.2522977
  14. Rodriguez, J., Kazmierkowski, M.P., Espinoza, J.R., Zanchetta, P., Abu-Rub, H., Young, H.A., Rojas, C.A.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inf. 9(2), 1003-1016 (2013) https://doi.org/10.1109/TII.2012.2221469
  15. Cortes, P., Kazmierkowski, M.P., Kennel, R.M., Quevedo, D.E., Rodriguez, J.: Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 55(12), 4312-4324 (2008) https://doi.org/10.1109/TIE.2008.2007480
  16. Rodriguez, J., Kennel, R.M., Espinoza, J.R., Trincado, M., Silva, C.A., Rojas, C.A.: High-performance control strategies for electrical drives: an experimental assessment. IEEE Trans. Ind. Electron. 59(2), 812-820 (2012) https://doi.org/10.1109/TIE.2011.2158778
  17. Miranda, H., Cortes, P., Yuz, J.I., Rodriguez, J.: Predictive torque control of induction machines based on state-space models. IEEE Trans. Ind. Electron. 56(6), 1916-1924 (2009) https://doi.org/10.1109/TIE.2009.2014904
  18. Preindl, M., Bolognani, S.: Model predictive direct speed control with finite control set of PMSM drive systems. IEEE Trans. Power Electron. 28(2), 1007-1015 (2013) https://doi.org/10.1109/TPEL.2012.2204277
  19. Fuentes, E.J., Silva, C., Quevedo, D.E., Silva, E.I.: Predictive speed control of a synchronous permanent magnet motor. In: 2009 IEEE International Conference on Industrial Technology, IEEE, Gippsland, VIC, Australia (2009).
  20. Fuentes, E.J., Silva, C.A., Yuz, J.I.: Predictive speed control of a two-mass system driven by a permanent magnet synchronous motor. IEEE Trans. Ind. Electron. 59(7), 2840-2848 (2012) https://doi.org/10.1109/TIE.2011.2158767
  21. Fuentes, E., Kalise, D., Rodriguez, J., Kennel, R.M.: Cascade-free predictive speed control for electrical drives. IEEE Trans. Ind. Electron. 61(5), 2176-2184 (2014) https://doi.org/10.1109/TIE.2013.2272280
  22. Saberi, S., Rezaie, B.: Direct model predictive speed control strategy for a PMSM fed by a three-level NPC converter. J. Energy Manag. Technol. 5(3), 1-7 (2021)
  23. Zhang, Z., Hackl, C.M., Kennel, R.: Computationally efficient DMPC for three-level NPC back-to-back converters in wind turbine systems with PMSG. IEEE Trans. Power Electron. 32(10), 8018-8034 (2017) https://doi.org/10.1109/TPEL.2016.2637081
  24. El-Sousy, F.F., Abuhasel, K.A.: Nonlinear adaptive backstepping control-based dynamic recurrent RBFN uncertainty observer for high-speed micro permanent-magnet synchronous motor drive system. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1696-1703, IEEE, Portland, OR, USA (2018).
  25. Li, Y., Qiang, S., Zhuang, X., Kaynak, O.: Robust and adaptive backstepping control for nonlinear systems using RBF neural networks. IEEE Trans. Neural Netw. 15(3), 693-701 (2004) https://doi.org/10.1109/TNN.2004.826215
  26. Zhang, T., Ge, S.S., Hang, C.C.: Adaptive neural network control for strict-feedback nonlinear systems using backstepping design. Automatica 36(12), 1835-1846 (2000) https://doi.org/10.1016/S0005-1098(00)00116-3
  27. Dastres, H., Rezaie, B., Baigzadehnoe, B.: Neural-network-based adaptive backstepping control for a class of unknown nonlinear time-delay systems with unknown input saturation. Neurocomputing 398, 131-152 (2020) https://doi.org/10.1016/j.neucom.2020.02.070
  28. Kuljaca, O., Swamy, N., Lewis, F.L., Kwan, C.M.: Design and implementation of industrial neural network controller using backstepping. IEEE Trans. Ind. Electron. 50(1), 193-201 (2003) https://doi.org/10.1109/TIE.2002.807675
  29. Tan, Y., Chang, J., Tan, H.: Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties. IEEE Trans. Ind. Electron. 50(5), 944-952 (2003) https://doi.org/10.1109/TIE.2003.817574
  30. Lin, C.-M., Hsu, C.-F.: Recurrent-neural-network-based adaptive-backstepping control for induction servomotors. IEEE Trans. Ind. Electron. 52(6), 1677-1684 (2005) https://doi.org/10.1109/TIE.2005.858704
  31. Lin, F.-J., Shieh, P.-H., Chou, P.-H.: Robust adaptive backstepping motion control of linear ultrasonic motors using fuzzy neural network. IEEE Trans. Fuzzy Syst. 16(3), 676-692 (2008) https://doi.org/10.1109/TFUZZ.2007.903333
  32. Kwan, C., Lewis, F.L.: Robust backstepping control of induction motors using neural networks. IEEE Trans. Neural Netw. 11(5), 1178-1187 (2000) https://doi.org/10.1109/72.870049
  33. Yeam, T.I., Lee, D.C.: Design of sliding-mode speed controller with active damping control for single-inverter dual-PMSM drive systems. IEEE Trans. Power Electron. 36(5), 5794-5801 (2020) https://doi.org/10.1109/TPEL.2020.3028601
  34. Bu, F., Yang, Z., Gao, Y., Pan, Z., Pu, T., Degano, M., Gerada, C.: Speed ripple reduction of direct-drive PMSM servo system at low-speed operation using virtual cogging torque control method. IEEE Trans. Ind. Electron. 68(1), 160-174 (2020) https://doi.org/10.1109/tie.2019.2962400
  35. Wang, F., He, L.: FPGA-based predictive speed control for PMSM system using integral sliding-mode disturbance observer. IEEE Trans. Ind. Electron. 68(2), 972-981 (2020) https://doi.org/10.1109/tie.2020.2969107
  36. Dai, C., Guo, T., Yang, J., Li, S.: A disturbance observer-based current-constrained controller for speed regulation of PMSM systems subject to unmatched disturbances. IEEE Trans. Ind. Electron. 68(1), 767-775 (2020) https://doi.org/10.1109/tie.2020.3005074
  37. He, L., Wang, F., Ke, D.: FPGA-based sliding-mode predictive control for PMSM speed regulation system using an adaptive ultralocal model. IEEE Trans. Power Electron. 36(5), 5784-5793 (2020)
  38. Xu, W., Junejo, A.K., Liu, Y., Hussien, M.G., Zhu, J.: An efficient antidisturbance sliding-mode speed control method for PMSM drive systems. IEEE Trans. Power Electron. 36(6), 6879-6891 (2020)
  39. Dai, S., Wang, J.B., Sun, Z., Chong, E.: Deadbeat predictive current control for high-speed permanent magnet synchronous machine drives with low switching-to-fundamental frequency ratios. IEEE Trans. Ind. Electron. 69(5), 4510-4521 (2022) https://doi.org/10.1109/TIE.2021.3078383
  40. Wei, Y., Wei, Y., Gao, Y., Qi, H., Guo, X., Li, M., Zhang, D.: A variable prediction horizon self-tuning method for nonlinear model predictive speed control on PMSM rotor position system. IEEE Access 9, 78812-78822 (2021) https://doi.org/10.1109/ACCESS.2021.3084321
  41. Rodriguez, J., Cortes, P.: Predictive Control of Power Converters and Electrical Drives. Wiley-IEEE Press, Chichester (2012)
  42. Kazantzis, N., Kravaris, C.: Time-discretization of nonlinear control systems via Taylor methods. Comput. Chem. Eng. 23(6), 763-784 (1999) https://doi.org/10.1016/S0098-1354(99)00007-1
  43. Yaramasu, V., Wu, B.: Model Predictive Control of Wind Energy Conversion Systems. Wiley, Hoboken (2016)
  44. Geyer, T., Quevedo, D.E.: Multistep fnite control set model predictive control for power electronics. IEEE Trans. Power Electron. 29(12), 6836-6846 (2014) https://doi.org/10.1109/TPEL.2014.2306939
  45. Shadmand, M.B., Jain, S., Balog, R.S.: Autotuning technique for the cost function weight factors in model predictive control for power electronic interfaces. IEEE J. Emerg. Select. Top. Power Electron. 7(2), 1408-1420 (2018) https://doi.org/10.1109/jestpe.2018.2849738
  46. Slotine, J.-J.E., Li, W.: Applied Nonlinear Control (no. 1). Prentice-Hall, Englewood Clifs (1991)
  47. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
  48. Geyer, T., Quevedo, D.E.: Multistep direct model predictive control for power electronics-part 2: analysis. In: 2013 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 1162-1169, IEEE, Denver, CO, USA (2013).
  49. Dirscherl, C., Hackl, C., Schechner, K.: Explicit model predictive control with disturbance observer for grid-connected voltage source power converters. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp. 999-1006, IEEE, Seville, Spain (2015).
  50. Do, T.D., Kwak, S., Choi, H.H., Jung, J.W.: Suboptimal control scheme design for interior permanent magnet synchronous motors: an SDRE-based approach. IEEE Trans. Power Electron. 29(6), 3020-3031 (2014) https://doi.org/10.1109/TPEL.2013.2272582
  51. Jung, J.W., Leu, V., Do, T., Kim, E.K., Choi, H.: Adaptive PID speed control design for permanent magnet synchronous motor drives. IEEE Trans. Ind. Electron. 30(2), 900-908 (2015) https://doi.org/10.1109/TPEL.2014.2311462
  52. Choi, H.H., Vu, N.T.T., Jung, J.W.: Digital implementation of an adaptive speed regulator for a PMSM. IEEE Trans. Power Electron. 26(1), 3-8 (2011) https://doi.org/10.1109/TPEL.2010.2055890
  53. Prior, G., Krstic, M.: A control Lyapunov approach to finite control set model predictive control for permanent magnet synchronous motors. J. Dyn. Syst. Measur. Control 137(1), 011001 (2015) https://doi.org/10.1115/1.4028223
  54. Palanisamy, R., Krishnasamy, V.: SVPWM for 3-phase 3-level neutral point clamped inverter fed induction motor control. Indones. J. Electr. Eng. Comput. Sci. 9(6), 703-710 (2018) https://doi.org/10.11591/ijeecs.v9.i3.pp703-710
  55. Hazra, S., De, A., Cheng, L., Palmour, J., Schupbach, M., Hull, B.A., Allen, S., Bhattacharya, S.: High switching performance of 1700-V, 50-A SiC power MOSFET over Si IGBT/BiMOSFET for advanced power conversion applications. IEEE Trans. Power Electron. 31(7), 4742-4754 (2016) https://doi.org/10.1109/TPEL.2015.2432012