DOI QR코드

DOI QR Code

Optimized junction temperature fluctuation suppression technique for SiC MOSFETs in a wireless charging system

  • Wang, Ruoyin (School of Electrical Engineering, Southeast University) ;
  • Huang, Xueliang (School of Electrical Engineering, Southeast University) ;
  • Li, Jiacheng (College of Electrical Engineering and Control Science, Nanjing University of Technology)
  • Received : 2021.07.19
  • Accepted : 2022.01.25
  • Published : 2022.05.20

Abstract

The problem of SiC MOSFET junction temperature fluctuation in wireless charging systems must be addressed immediately. The existing temperature fluctuation suppression technique requires a large number of additional switches and capacitors. This study further optimizes the temperature fluctuation tracking suppression (TFTS) strategy. This method realizes closed-loop temperature adjustment and greatly simplifies the system structure. In addition, an optimized TFTS (OTFTS) strategy combined with an optimized proportional-integral-derivative control method is proposed to solve integral saturation and the subsequent control instability phenomenon. Then, a 5.5 kW experimental system is built. Results show that the OTFTS strategy eliminates 17.9 ℃ junction temperature fluctuation on the basis of reducing the hardware cost. It also has a good dynamic response and junction temperature fluctuation suppression effect.

Keywords

Acknowledgement

This study is supported by Fast Wireless Charging Technology, JZX5Y20190221001001.

References

  1. Yan, Z., Song, B., Zhang, Y., Zhang, K., Mao, Z., Hu, Y.: A rotation-free wireless power transfer system with stable output power and efficiency for autonomous underwater vehicles. IEEE Trans. Power Electron. 34(5), 4005-4008 (2019) https://doi.org/10.1109/tpel.2018.2871316
  2. Li, S., Tao, C.: Optimization of T-type compensation network for a certain power fluctuation tolerance of the dynamic wireless power transmission. In: 2018 IEEE 4th Southern Power Electronics Conference (SPEC), Singapore, Singapore, 1-5 (2018)
  3. Anderson, J.A., Kolar, J.W.: Accurate calorimetric switching loss measurement for 900 V 10 m $\Omega$ SiC Mosfets. IEEE Trans. Power Electron. 32(12), 8963-8968 (2017) https://doi.org/10.1109/TPEL.2017.2701558
  4. Millan, J., Godignon, P., Rebollo, J.: A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155-2163 (2014) https://doi.org/10.1109/TPEL.2013.2268900
  5. Hu, B., et al.: Failure and reliability analysis of a SiC power module based on stress comparison to a Si device. IEEE Trans. Device Mater. Relib. 17(4), 727-737 (2017) https://doi.org/10.1109/TDMR.2017.2766692
  6. Ciappa, M.: Selected failure mechanisms of modern power modules. Microelectron. Reliab. 42(4), 653-667 (2002) https://doi.org/10.1016/S0026-2714(02)00042-2
  7. Liebig, S., Lutz, J.: Efficiency and lifetime of an active power filter with SiC-MOSFETs for aerospace application. In: PCIM Europe 2014, International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 1-9 (2014)
  8. Liebig, S., Engler, A., Lutz, J.: Design and evaluation of state of the art rectifiers dedicated for a 46 kW E-ECS aerospace application with respect to power density and reliability. In: Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, 1-10 (2011)
  9. McCluskey, F.P., Dash, M., Huff, D.: Reliability of high temperature solder alternatives. Microelectron. Reliab. 46(9), 1910-1914 (2006) https://doi.org/10.1016/j.microrel.2006.07.090
  10. Dicarlo, J.A.: Creep of chemically vapour deposited SiC fibres. J. Mater. Sci. 21(1), 217-224 (1986) https://doi.org/10.1007/BF01144723
  11. Zhu, S., Mizuno, M., Kaya, H.: Creep and fatigue behavior of SiC fiber reinforced SiC composite at high temperatures. Mater. Sci. Eng., A 225(1-2), 69-77 (1997) https://doi.org/10.1016/S0921-5093(96)10872-8
  12. Herrmann, T., Feller, M., Licht, T.: Power cycling induced failure mechanisms in solder layers. In: 2007 European Conference on Power Electronics and Applications, Aalborg, Denmark, 1-7 (2007)
  13. Wang, R., Tan, L., Huang, X.: Analysis, design, and implementation of junction temperature fluctuation tracking suppression strategy for SiC MOSFETs in wireless high-power transfer. IEEE Trans. Power Electron. 36(1), 1193-1204 (2021) https://doi.org/10.1109/tpel.2020.3004922
  14. Liu, H., et al.: Dynamic wireless charging for inspection robots based on decentralized energy pickup structure. IEEE Trans. Ind. Inf. 14(4), 1786-1797 (2018) https://doi.org/10.1109/tii.2017.2781370
  15. Ma, K., Blaabjerg, F.: Reactive power influence on the thermal cycling of multi-MW wind power inverter. IEEE Trans. Ind. Appl. 49(2), 922-930 (2013) https://doi.org/10.1109/TIA.2013.2240644
  16. Wang, H., Yu, X.: Control of parallel connected power converters for low voltage microgrid-part II: dynamic electrothermal modeling. IEEE Trans. Power Electron. 25(12), 2971-2980 (2010) https://doi.org/10.1109/TPEL.2010.2087394
  17. Zanchetta, P., Bifaretti, S., Tarisciotti, L.: Distributed commutations pulse-width modulation technique for high-power AC/DC multi-level converters. IET Power Electron. 5(6), 909-919 (2012) https://doi.org/10.1049/iet-pel.2011.0281
  18. Wang, J.-C., Su, Y.-L., Jiang, J.-A.: A novel multipoint direct-estimation method for the maximum power point tracking of photovoltaic modules under partially shaded irradiation conditions. In: 2012 IEEE International Energy Conference and Exhibition (ENERGYCON), Florence, Italy (2012)
  19. Saleki, A., Bina, M.T.: Lifetime extension by varying switching frequency of inverters based on junction temperature estimation. In: 2018 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), Tehran, Iran (2018)
  20. Polom, T.A., Wang, B.: Control of junction temperature and its rate of change at thermal boundaries via precise. IEEE Trans. Ind. Appl. 53(5), 4796-4806 (2017) https://doi.org/10.1109/TIA.2017.2710038
  21. Ouhab, M., Khatir, Z., Wang, M.-X.: New analytical model for real-time junction temperature estimation of multichip power module used in a motor drive. IEEE Trans. Power Electron. 33(6), 5292-5301 (2018) https://doi.org/10.1109/tpel.2017.2736534
  22. Qiu, Z., Wen, X.: Reliability modeling and analysis of SiC MOSFET power modules. In: IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing (2017)
  23. Qi, F., Wang, M., Xu, L.: Investigation and review of challenges in a high-temperature 30-kVA three-phase inverter using SiC MOSFETs. IEEE Trans. Ind. Appl. 54(3), 2483-2491 (2018) https://doi.org/10.1109/tia.2018.2796059
  24. March, P., Turner, M.C.: Anti-windup compensator designs for nonsalient permanent-magnet synchronous motor speed regulators. IEEE Trans. Ind. Appl. 45(5), 1598-1609 (2009) https://doi.org/10.1109/tia.2009.2027157
  25. Bagnoli, P.E., Dallago, E.: Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. I. Fundamentals and theory. IEEE Trans. Power Electron. 13(6), 1208-1219 (1998) https://doi.org/10.1109/63.728348