DOI QR코드

DOI QR Code

Unbalanced control strategy featuring inconsistent sub-module voltage for modular multilevel converter-bidirectional DC-DC converter

  • Chen, Peng (School of Electrical Engineering, Southeast University) ;
  • Xiao, Fei (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering) ;
  • Liu, Jilong (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering) ;
  • Zhu, Zhichao (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering) ;
  • Huang, Zhaojie (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering)
  • Received : 2021.09.13
  • Accepted : 2022.01.28
  • Published : 2022.05.20

Abstract

Modular multilevel converter-bidirectional DC-DC converter (MMC-BDC) is a prospective solution for the bidirectional DC-DC power conversion between medium-voltage DC (MVDC) bus and distributed energy storage system. Researchers have studied its application in the shipboard power system. In face of distributed energy storage devices with discrepant state of charge (SOC), the sub-modules (SMs) of MMC-BDC should work under inconsistent power to unify the SOC level. The existing unbalanced SM power control strategies fail to consider unbalanced operation range and efficiency. Therefore, this study proposes a novel unbalanced control strategy based on the feedforward compensation method, which is characterized by inconsistent SM voltage. Comparisons are made to demonstrate the advantages of the proposed strategy over traditional ones, and the dynamic characteristics are analyzed. Simulation and experiment results illustrate the effectiveness of the proposed unbalanced operation strategy.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundation of China under grant number 51807200.

References

  1. Ma, W.: Development of vessel integrated power system. Proc. Int. Conf. Electr. Mach. Syst. 2011, 1-12 (2011)
  2. Fu, L., Liu, L., Wang, G., Ma, F., Ye, Z., Ji, F., Liu, L.: The research progress of medium voltage dc integrated power system in China. Chin. J. Ship Res. 11(1), 72-79 (2016)
  3. Ma, W.: A consideration on the complex electrification and informationization development of vessels. J. Nav. Univ. Eng. 22(5), 1-4 (2010) https://doi.org/10.3969/j.issn.1009-3486.2010.05.001
  4. Fang, S., Wang, Y., Gou, B., Xu, Y.: Toward future green maritime transportation: an overview of seaport microgrids and all-electric ships. IEEE Trans. Veh. Technol. 69(1), 207-219 (2020) https://doi.org/10.1109/tvt.2019.2950538
  5. Sulligoi, G., Vicenzutti, A., Menis, R.: All-electric ship design: from electrical propulsion to integrated electrical and electronic power systems. IEEE Trans. Transp. Electr. 2(4), 507-521 (2016) https://doi.org/10.1109/TTE.2016.2598078
  6. IEEE guide for the design and application of power electronics in electrical power systems on ships. In: IEEE Std 1662-2008, pp. 1-72 (2009)
  7. Montesinos-Miracle, D., Massot-Campos, M., BergasJane, J., Galceran-Arellano, S., Rufer, A.: Design and control of a modular multilevel dc/dc converter for regenerative applications. IEEE Trans. Power Electron. 28(8), 3970-3979 (2013) https://doi.org/10.1109/TPEL.2012.2231702
  8. Zhao, B., Song, Q., Li, J., Wang, Y., Liu, W.: Modular multilevel high-frequency-link dc transformer based on dual active phase-shift principle for medium-voltage dc power distribution application. IEEE Trans. Power Electron. 32(3), 1779-1791 (2017) https://doi.org/10.1109/TPEL.2016.2558660
  9. Wu, W., Xie, S., Zhang, Z., Xu, J.: Analysis and design of control strategy for MMC-BDC based ultra-capacitors energy storage systems. Proc. Chin. Soc. Electr. Eng. 34(27), 4568-4575 (2014)
  10. Bi, K., Sun, L., An, Q., Duan, J., Gao, Y.: Distributed energy balancing control strategy for energy storage system based on modular multilevel dc-dc converter. Trans. China Electrotech. Soc. 33(16), 3811-3821 (2018)
  11. Bi, K., An, Q., Duan, J., Sun, L., Gai, K.: Fast diagnostic method of open circuit fault for modular multilevel dc-dc converter applied in energy storage system. IEEE Trans. Power Electron. 32(5), 3292-3296 (2017) https://doi.org/10.1109/TPEL.2016.2646402
  12. Bi, K., Liu, Y., Tian, B., Yang, W., Xu, D., Yan, W.: Analysis and design of an impedance source modular DC/DC converter for energy storage system. In: 2020 IEEE 9th international power electronics and motion control conference (IPEMC2020-ECCE Asia), pp. 1318-1323 (2020)
  13. Bi, K., An, Q., Duan, J., Sun, Li.: Analysis and implementation of an enhanced modular multilevel DC/DC converter for super capacitor energy storage system. In: 2017 IEEE transportation electrification conference and expo, Asia-Pacific (ITEC Asia-Pacific), pp. 1-6 (2017)
  14. Guo, L., Liang, H., Zhang, W.: State-of-charge balancing control strategy for battery energy storage system based on modular multi-level converter. Power Syst. Technol. 41(8), 2688-2698 (2017)
  15. Sharma, M., Hernandez, C., Badawy, M.O.: application of model predictive control in modular multilevel converter for MTPA operation and SOC balancing. In: Proc. 2018 IEEE 19th workshop on control and modeling for power electronics (COMPEL), pp. 1-8 (2018)
  16. Li, N., Gao, F., Hao, T., Ma, Z., Zhang, C.: SOH balancing control method for the MMC battery energy storage system. IEEE Trans. Industr. Electron. 65(8), 6581-6591 (2017) https://doi.org/10.1109/tie.2017.2733462
  17. Xu, B., Tu, H., Du, Y., Yu, H., Liang, H., Lukic, S.: A distributed control architecture for cascaded H-bridge converter with integrated battery energy storage. IEEE Trans. Ind. Appl. 57(1), 845-856 (2021) https://doi.org/10.1109/TIA.2020.3039430
  18. Chatzinikolaou, E., Rogers, D.J.: Cell SoC balancing using a cascaded full-bridge multilevel converter in battery energy storage systems. IEEE Trans. Ind. Electron. 63(9), 5394-5402 (2016) https://doi.org/10.1109/TIE.2016.2565463
  19. Maharjan, L., Inoue, S., Akagi, H., Asakura, J.: State-of-charge (SOC)-balancing control of a battery energy storage system based on a cascade PWM converter. IEEE Trans. Power Electron. 24(6), 1628-1636 (2009) https://doi.org/10.1109/TPEL.2009.2014868
  20. Ai, H., Wu, J., Hao, L., Feng, B., Zhang, J., Zhang, J.: Research on battery self-balancing control strategy in cascade energy storage system. Trans. China Electrotech. Soc. 30(14), 442-449 (2015)
  21. Wang, P., Ren, P., Lu, X., Wang, W., Xu, D.: A distributed state-of-charge balancing control scheme for three-port output-series converters in DC hybrid energy storage systems. IEEE Access 7, 157173-157184 (2019) https://doi.org/10.1109/access.2019.2949916
  22. Liang, Y., Zhang, H., Du, M., Sun, K.: Parallel coordination control of multi-port DC-DC converter for stand-alone photovoltaic-energy storage systems. CPSS Trans. Power Electron. Appl. 5(3), 235-241 (2020) https://doi.org/10.24295/cpsstpea.2020.00020
  23. Bi, K., Sun, L., An, Q., Duan, J.: Active SOC balancing control strategy for modular multilevel super capacitor energy storage system. IEEE Trans. Power Electron. 34(5), 4981-4992 (2019) https://doi.org/10.1109/tpel.2018.2865553
  24. Chen, P., Xiao, F., Liu, J., Zhu, Z., Ren, Q.: Unbalanced operation principle and fast balancing charging strategy of a cascaded modular multilevel converter -bidirectional dc-dc converter in the shipboard applications. IEEE Trans. Transp. Electr. 6(3), 1265-1278 (2020) https://doi.org/10.1109/tte.2020.3016029
  25. Chen, P., Xiao, F., Liu, J., Zhu, Z., Ren, Q.: Independent voltage control strategy for cascaded modular multilevel converter -bidirectional dc-dc converter under unbalanced operation. In: Proc. IEEE 9th International power electronics and motion control conference, pp. 1378-1383 (2020)
  26. Chen, P., Liu, J., Xiao, F., Zhu, Z., Huang, Z.: Lyapunov-function-based feedback linearization control strategy of modular multilevel converter-bidirectional dc-dc converter for vessel integrated power systems. Energies 14, 4691 (2021) https://doi.org/10.3390/en14154691
  27. Garcia, O., Zumel, P., de Castro, A., Cobos, A.: Automotive dc-dc bidirectional converter made with many interleaved buck stages. IEEE Trans. Power Electron. 21(3), 578-586 (2006) https://doi.org/10.1109/TPEL.2006.872379
  28. Lu, D.D., Agelidis, V.G.: Photovoltaic-battery powered dc bus system for common portable electronic devices. IEEE Trans. Power Electron. 24(3), 849-855 (2009) https://doi.org/10.1109/TPEL.2008.2011131