Acknowledgement
This work was supported in part by the Research Fund for the National Science Foundation of China under Grant 51991384 and National Key Research and Development Plan of China under 2021YFB2500704.
References
- Irfan, M.S., Tawfk, M.A., Ahmed, A., Part, J.: Analysis and design of flux cancellation power-decoupling method for electrolytic-capacitorless three-phase cascaded multilevel inverters. J. Power Electron. 21(2), 321-341 (2021) https://doi.org/10.1007/s43236-020-00196-3
- Roy, J., Xia, Y., Ayyanar, R.: High step-up transformerless inverter for AC module applications with active power decoupling. IEEE Trans. Power Electron. 66(5), 3891-3901 (2019) https://doi.org/10.1109/TED.2019.2928889
- Zhao, N., Wang, G., Xu, D., Zhu, L., Zhang, G., Huo, J.: Inverter power control based on dc-link voltage regulation for IPMSM drives without electrolytic capacitors. IEEE Trans. Power Electron. 33(1), 558-571 (2018) https://doi.org/10.1109/TPEL.2017.2670623
- Roy, J., Xia, Y., Ayyanar, R.: Half-bridge voltage swing inverter with active power decoupling for single-phase PV systems supporting wide power factor range. IEEE Trans. Power Electron. 34(8), 7450-7461 (2019) https://doi.org/10.1109/tpel.2018.2877652
- Diao, L., Dong, K., Yin, S., Tang, J., Chen, J.: Ripple analysis and control of electric multiple unit traction drives under a fluctuating dc link voltage. J. Power Electron. 16(5), 1851-1860 (2016) https://doi.org/10.6113/JPE.2016.16.5.1851
- Yao, W., Yang, Y., Xu, Y., Blaabjerg, F., Liu, S., Wilson, G.: Active damping of LCL filters with all-pass filters considering grid impedance variations and parameter drifts. Proc. Energy Convers. Congress Expos. 4915-4921 (2018)
- Xu, S., Chang, L., Shao, R.: Single-phase voltage source inverter with voltage boosting and power decoupling capabilities. IEEE J. Emerg. Sel. Topics Power Electron. 8(3), 2977-2988 (2020) https://doi.org/10.1109/jestpe.2019.2936136
- Huang, K., Wang, Y., Wai, R.: Design of power decoupling strategy for single-phase grid-connected inverter under nonideal power grid. IEEE Trans. Power Electron. 34(3), 2938-2955 (2019) https://doi.org/10.1109/tpel.2018.2845466
- Nandi, P., Adda, R.: Integration of boost-type active power decoupling topology with single-phase switched boost inverter. IEEE Trans. Power Electron. 35(11), 11965-11975 (2020) https://doi.org/10.1109/tpel.2020.2988402
- Shin, H., Chae, Y., Son, Y., Ha, J.: Single-phase grid-connected motor drive system with dc-link shunt compensator and small dc-link capacitor. IEEE Trans. Power Electron. 32(2), 1268-1278 (2017) https://doi.org/10.1109/TPEL.2016.2540633
- Wu, H., Wong, S., Tse, C.K., Chen, Q.: Control and modulation of bidirectional single-phase AC-DC three-phase-leg SPWM converters with active power decoupling and minimal storage capacitance. IEEE Trans. Power Electron. 31(6), 4226-4240 (2016) https://doi.org/10.1109/TPEL.2015.2477504
- Sun, H., Wang, H., Qi, W.: Automatic power decoupling controller of dependent power decoupling circuit for enhanced transient performance. IEEE Trans. Ind. Electron. 66(3), 1820-1831 (2019) https://doi.org/10.1109/tie.2018.2838100
- Li, S., Qi, W., Tan, S., Hui, S.Y.: Integration of an active filter and a single-phase AC/DC converter with reduced capacitance requirement and component count. IEEE Trans. Power Electron. 31(6), 4121-4137 (2016) https://doi.org/10.1109/TPEL.2015.2476361
- Ming, W., Zhong, Q., Zhang, X.: A single-phase four-switch rectifier with significantly reduced capacitance. IEEE Trans. Power Electron. 31(2), 1618-1632 (2016) https://doi.org/10.1109/TPEL.2015.2414425
- Zeng, J., Zhao, J., Kim, T.: Modeling and control for a photovoltaic inverter with power decoupling on the AC side. Proc. Energy Convers. Congress Expos. 991-997 (2018)
- Wu, M., Li, S., Tan, S., Hui, S.Y.: Optimal design of integrated magnetics for differential rectifiers and inverters. IEEE Trans. Power Electron. 33(6), 4616-4626 (2018) https://doi.org/10.1109/tpel.2017.2731972
- Li, H., Zhang, K., Zhao, H., Fan, S., Xiong, J.: Active power decoupling for high-power single-phase PWM rectifiers. IEEE Trans. Power Electron. 28(3), 1308-1319 (2013) https://doi.org/10.1109/TPEL.2012.2208764
- Rezaie, H., Rastegar H., Pichan, M.: Enhancing reliability and power density of single-phase PHEV charger using an integrated active filter. In 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), Tehran, Iran, pp. 544-549 (2018)
- Chen, R., Liu, Y., Kutkut, N., Batarseh, I., Shen, Z.: DC capacitor-less inverter for single-phase power conversion with minimum voltage and current stress. IEEE Trans. Power Electron. 30(10), 5499-5507 (2015) https://doi.org/10.1109/TPEL.2014.2375271
- Liang, S., Xi, L., Chen, R., Liu, Y., Zhang, S., Peng, F.Z.: A solid state variable capacitor with minimum DC capacitance. Proc. Appl. Power Electron. Conf. Expo. 3496-3501 (2014)
- Zhang, J., Liu, K., Liu, Y., He, S., Tian, W.: Active power decoupling and controlling for single-phase FACTS device. J. Eng. 2019(16), 1333-1337 (2019) https://doi.org/10.1049/joe.2018.8823
- Santoyo-Anaya, M.A., Rodriguez-Rodriguez, J.R., Moreno-Goytia, E.L., Venegas-Rebollar, V., Salgado-Herrera, N.M.: Current-sensorless VSC-PFC rectifer control with enhance response to dynamic and sag conditions using a single PI loop. IEEE Trans. Power Electron. 33(7), 6403-6415 (2018) https://doi.org/10.1109/tpel.2017.2749213
- Chen, H., Lu, C., Li, G.: Design and implementation of three-phase current sensorless control for PFC bridge converter with considering voltage drops of power semiconductors. IEEE Trans. Ind. Electron. 65(12), 9234-9242 (2018) https://doi.org/10.1109/tie.2018.2818639
- Chen, H., Lu, C., Li, G., Chen, W.: Digital current sensorless control for dual-boost half-bridge PFC converter with natural capacitor voltage balancing. IEEE Trans. Power Electron. 32(5), 4074-4083 (2017) https://doi.org/10.1109/TPEL.2016.2592944
- Qi, W., Li, S., Tan, S., Hui, S.Y.: Design considerations for voltage sensorless control of a PFC single-phase rectifier without electrolytic capacitors. IEEE Trans. Power Electron. 67(3), 1878-1889 (2020)