DOI QR코드

DOI QR Code

Active power decoupling method for single-phase PWM converters without LC branch sensors

  • Xiong, Jian (School of Electrical Engineering, Southeast University) ;
  • Zhang, Jianzhong (School of Electrical Engineering, Southeast University) ;
  • Xu, Zheng (School of Electrical Engineering, Southeast University)
  • Received : 2021.12.22
  • Accepted : 2022.03.30
  • Published : 2022.07.20

Abstract

The presence of ripple power in a converter system has a negative influence on both control performance and reliability. Active power decoupling (APD) is a practical technique to deal with such problems. However, the APD method requires extra sensors on the LC branch, which increases the complexity and cost of the control system. This paper puts forward a new APD method to handle undesirable ripple power for H-bridge PWM converters. When compared with previous APD methods, the proposed APD method eliminates the current and voltage sensors on the LC branch by utilizing a ripple voltage control loop. Then, both the cost and reliability of the converter system are improved. To improve the control performance, an APD method that only has a voltage sensor in the LC branch is also discussed. Simulation results show that the DC-link voltage ripples can be decreased due to the application of the proposed APD method. Finally, the effectiveness of the proposed method is verified by the experimental results.

Keywords

Acknowledgement

This work was supported in part by the Research Fund for the National Science Foundation of China under Grant 51991384 and National Key Research and Development Plan of China under 2021YFB2500704.

References

  1. Irfan, M.S., Tawfk, M.A., Ahmed, A., Part, J.: Analysis and design of flux cancellation power-decoupling method for electrolytic-capacitorless three-phase cascaded multilevel inverters. J. Power Electron. 21(2), 321-341 (2021) https://doi.org/10.1007/s43236-020-00196-3
  2. Roy, J., Xia, Y., Ayyanar, R.: High step-up transformerless inverter for AC module applications with active power decoupling. IEEE Trans. Power Electron. 66(5), 3891-3901 (2019) https://doi.org/10.1109/TED.2019.2928889
  3. Zhao, N., Wang, G., Xu, D., Zhu, L., Zhang, G., Huo, J.: Inverter power control based on dc-link voltage regulation for IPMSM drives without electrolytic capacitors. IEEE Trans. Power Electron. 33(1), 558-571 (2018) https://doi.org/10.1109/TPEL.2017.2670623
  4. Roy, J., Xia, Y., Ayyanar, R.: Half-bridge voltage swing inverter with active power decoupling for single-phase PV systems supporting wide power factor range. IEEE Trans. Power Electron. 34(8), 7450-7461 (2019) https://doi.org/10.1109/tpel.2018.2877652
  5. Diao, L., Dong, K., Yin, S., Tang, J., Chen, J.: Ripple analysis and control of electric multiple unit traction drives under a fluctuating dc link voltage. J. Power Electron. 16(5), 1851-1860 (2016) https://doi.org/10.6113/JPE.2016.16.5.1851
  6. Yao, W., Yang, Y., Xu, Y., Blaabjerg, F., Liu, S., Wilson, G.: Active damping of LCL filters with all-pass filters considering grid impedance variations and parameter drifts. Proc. Energy Convers. Congress Expos. 4915-4921 (2018)
  7. Xu, S., Chang, L., Shao, R.: Single-phase voltage source inverter with voltage boosting and power decoupling capabilities. IEEE J. Emerg. Sel. Topics Power Electron. 8(3), 2977-2988 (2020) https://doi.org/10.1109/jestpe.2019.2936136
  8. Huang, K., Wang, Y., Wai, R.: Design of power decoupling strategy for single-phase grid-connected inverter under nonideal power grid. IEEE Trans. Power Electron. 34(3), 2938-2955 (2019) https://doi.org/10.1109/tpel.2018.2845466
  9. Nandi, P., Adda, R.: Integration of boost-type active power decoupling topology with single-phase switched boost inverter. IEEE Trans. Power Electron. 35(11), 11965-11975 (2020) https://doi.org/10.1109/tpel.2020.2988402
  10. Shin, H., Chae, Y., Son, Y., Ha, J.: Single-phase grid-connected motor drive system with dc-link shunt compensator and small dc-link capacitor. IEEE Trans. Power Electron. 32(2), 1268-1278 (2017) https://doi.org/10.1109/TPEL.2016.2540633
  11. Wu, H., Wong, S., Tse, C.K., Chen, Q.: Control and modulation of bidirectional single-phase AC-DC three-phase-leg SPWM converters with active power decoupling and minimal storage capacitance. IEEE Trans. Power Electron. 31(6), 4226-4240 (2016) https://doi.org/10.1109/TPEL.2015.2477504
  12. Sun, H., Wang, H., Qi, W.: Automatic power decoupling controller of dependent power decoupling circuit for enhanced transient performance. IEEE Trans. Ind. Electron. 66(3), 1820-1831 (2019) https://doi.org/10.1109/tie.2018.2838100
  13. Li, S., Qi, W., Tan, S., Hui, S.Y.: Integration of an active filter and a single-phase AC/DC converter with reduced capacitance requirement and component count. IEEE Trans. Power Electron. 31(6), 4121-4137 (2016) https://doi.org/10.1109/TPEL.2015.2476361
  14. Ming, W., Zhong, Q., Zhang, X.: A single-phase four-switch rectifier with significantly reduced capacitance. IEEE Trans. Power Electron. 31(2), 1618-1632 (2016) https://doi.org/10.1109/TPEL.2015.2414425
  15. Zeng, J., Zhao, J., Kim, T.: Modeling and control for a photovoltaic inverter with power decoupling on the AC side. Proc. Energy Convers. Congress Expos. 991-997 (2018)
  16. Wu, M., Li, S., Tan, S., Hui, S.Y.: Optimal design of integrated magnetics for differential rectifiers and inverters. IEEE Trans. Power Electron. 33(6), 4616-4626 (2018) https://doi.org/10.1109/tpel.2017.2731972
  17. Li, H., Zhang, K., Zhao, H., Fan, S., Xiong, J.: Active power decoupling for high-power single-phase PWM rectifiers. IEEE Trans. Power Electron. 28(3), 1308-1319 (2013) https://doi.org/10.1109/TPEL.2012.2208764
  18. Rezaie, H., Rastegar H., Pichan, M.: Enhancing reliability and power density of single-phase PHEV charger using an integrated active filter. In 9th Annual Power Electronics, Drives Systems and Technologies Conference (PEDSTC), Tehran, Iran, pp. 544-549 (2018)
  19. Chen, R., Liu, Y., Kutkut, N., Batarseh, I., Shen, Z.: DC capacitor-less inverter for single-phase power conversion with minimum voltage and current stress. IEEE Trans. Power Electron. 30(10), 5499-5507 (2015) https://doi.org/10.1109/TPEL.2014.2375271
  20. Liang, S., Xi, L., Chen, R., Liu, Y., Zhang, S., Peng, F.Z.: A solid state variable capacitor with minimum DC capacitance. Proc. Appl. Power Electron. Conf. Expo. 3496-3501 (2014)
  21. Zhang, J., Liu, K., Liu, Y., He, S., Tian, W.: Active power decoupling and controlling for single-phase FACTS device. J. Eng. 2019(16), 1333-1337 (2019) https://doi.org/10.1049/joe.2018.8823
  22. Santoyo-Anaya, M.A., Rodriguez-Rodriguez, J.R., Moreno-Goytia, E.L., Venegas-Rebollar, V., Salgado-Herrera, N.M.: Current-sensorless VSC-PFC rectifer control with enhance response to dynamic and sag conditions using a single PI loop. IEEE Trans. Power Electron. 33(7), 6403-6415 (2018) https://doi.org/10.1109/tpel.2017.2749213
  23. Chen, H., Lu, C., Li, G.: Design and implementation of three-phase current sensorless control for PFC bridge converter with considering voltage drops of power semiconductors. IEEE Trans. Ind. Electron. 65(12), 9234-9242 (2018) https://doi.org/10.1109/tie.2018.2818639
  24. Chen, H., Lu, C., Li, G., Chen, W.: Digital current sensorless control for dual-boost half-bridge PFC converter with natural capacitor voltage balancing. IEEE Trans. Power Electron. 32(5), 4074-4083 (2017) https://doi.org/10.1109/TPEL.2016.2592944
  25. Qi, W., Li, S., Tan, S., Hui, S.Y.: Design considerations for voltage sensorless control of a PFC single-phase rectifier without electrolytic capacitors. IEEE Trans. Power Electron. 67(3), 1878-1889 (2020)