DOI QR코드

DOI QR Code

Capacity estimation of lithium-ion batteries using convolutional neural network and impedance spectra

  • Pradyumna, T. K. (Department of Electrical Engineering, Soongsil University) ;
  • Cho, Kangcheol (Department of Electrical Engineering, Soongsil University) ;
  • Kim, Minseong (Department of Electrical Engineering, Soongsil University) ;
  • Choi, Woojin (Department of Electrical Engineering, Soongsil University)
  • 투고 : 2021.12.02
  • 심사 : 2022.02.17
  • 발행 : 2022.05.20

초록

Battery capacity is a parameter that has a very close association with the state of health (SoH) of a Li-ion battery. Due to the complex electrochemical mechanisms behind the degradation of battery life, the estimation of SoH encounters many difficulties. To date, experiment-based methods, model-based methods, and data-driven models have been developed to estimate capacity using data from charging curves. In the case of EVs and HEVs, due to the unpredictable charge patterns employed by users, it is not known how much charging data will be available to predict the capacity at a given point in time. This paper presents a method to accurately estimate capacity using impedance curves obtained from an electrochemical impedance spectroscopy (EIS) test and a convolutional neural network (CNN). The CNN model was trained using the impedance data of a single cell collected at different SoH values, and the trained model was verified using the impedance data of eight other cells. The maximum error in the prediction was found to be 0.57 (% capacity) and the RMS error was found to be 0.233 (% capacity). These results illustrate the accuracy and robustness of the proposed model.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2021R1A2C1011504)

참고문헌

  1. Languang, L., Han, X., Li, J., Hua, J., Ouyang, M.: A review on the key issues for lithium-ion battery management in electric vehicles. J. Power Source. 226, 272-288 (2013). https://doi.org/10.1016/j.jpowsour.2012.10.060. (ISSN 0378-7753)
  2. Xiong, R., Li, L., Tian, J.: Towards a smarter battery management system: a critical review on battery state of health monitoring methods. J. Power Source 405, 18-29 (2018). https://doi.org/10.1016/j.jpowsour.2018.10.019. (ISSN 0378-7753)
  3. Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Source. 134(2), 277-292 (2004). https://doi.org/10.1016/j.jpowsour.2004.02.033. (ISSN 0378-7753)
  4. Merwe, R., Wan, E., Julier, S.: Sigma-point kalman filters for nonlinear estimation and sensor-fusion-applications to integrated navigation. Proc. AIAA Guid. Navig. Control Conf. (2004). https://doi.org/10.2514/6.2004-5120
  5. Plett, G.L.: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: Simultaneous state and parameter estimation. J. Power Source. 161(2), 1369-1384 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.004. (ISSN 0378-7753)
  6. Chao, Hu., Youn, B.D., Chung, J.: A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl. Energy 92, 694-704 (2012). https://doi.org/10.1016/j.apenergy.2011.08.002
  7. Zou, Y., Xiaosong, Hu., Ma, H., Li, S.E.: Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. J. Power Source. 273, 793-803 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.146
  8. Zhang, F., Liu, G., Fang, L.: Battery state estimation using Unscented Kalman Filter. IEEE Int. Conf. Robot. Autom. 2009, 1863-1868 (2009). https://doi.org/10.1109/ROBOT.2009.5152745
  9. Chen, C., Xiong, R., Shen, W.: A lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation. IEEE Trans. Power Electron. 33(1), 332-342 (2018). https://doi.org/10.1109/TPEL.2017.2670081
  10. Olivares, B.E., Cerda Munoz, M.A., Orchard, M.E., Silva, J.F.: Particle-filtering-based prognosis framework for energy storage devices with a statistical characterization of state-of-health regeneration phenomena. IEEE Trans. Instrum. Measure. 62(2), 364-376 (2013). https://doi.org/10.1109/TIM.2012.2215142
  11. Moura, S.J., Chaturvedi, N.A., Krstic, M.: Adaptive partial differential equation observer for battery state-of-charge/state-of-health estimation via an electrochemical model. ASME. J. Dyn. Syst. Meas. Control. 136(1), 011015 (2013). https://doi.org/10.1115/1.4024801
  12. Bartlett, A., Marcicki, J., Onori, S., Rizzoni, G., Yang, X.G., Miller, T.: Electrochemical model-based state of charge and capacity estimation for a composite electrode lithium-ion battery. IEEE Trans. Control Syst. Technol. 24(2), 384-399 (2016). https://doi.org/10.1109/TCST.2015.2446947
  13. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1798-1828 (2013). https://doi.org/10.1109/TPAMI.2013.50
  14. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436-444 (2015). https://doi.org/10.1038/nature14539
  15. Wang, Q., Kang, J., Tan, Z., Luo, M.: An online method to simultaneously identify the parameters and estimate states for lithium ion batteries. Electrochim. Acta 289, 376-388 (2018) https://doi.org/10.1016/j.electacta.2018.08.076
  16. Xiong, R., Sun, F., Chen, Z., He, H.: A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles. Appl. Energy 113, 463-476 (2014). https://doi.org/10.1016/j.apenergy.2013.07.061. (ISSN 0306-2619)
  17. Tran, N.-T., Khan, A.B., Choi, W.: State of charge and state of health estimation of AGM VRLA batteries by employing a dual extended Kalman filter and an ARX model for online parameter estimation. Energies 10, 137 (2017). https://doi.org/10.3390/en10010137
  18. Kim, J., Cho, B.H.: State-of-charge estimation and state-of-health prediction of a Li-ion degraded battery based on an EKF combined with a per-unit system. IEEE Trans. Veh. Technol. 60(9), 4249-4260 (2011) https://doi.org/10.1109/TVT.2011.2168987
  19. Riviere, E., Sari, A., Venet, P., Meniere, F., Bultel, Y.: Innovative incremental capacity analysis implementation for C/LiFePO4 cell state-of-health estimation in electrical vehicles. Batteries 5, 37 (2019) https://doi.org/10.3390/batteries5020037
  20. He, J., Wei, Z., Bian, X., Yan, F.: State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model. IEEE Trans. Transp. Electrifc. 6(2), 417-426 (2020). https://doi.org/10.1109/TTE.2020.2994543
  21. Ruan, H., He, H., Wei, Z., Quan, Z., Li, Y.: State of health estimation of lithium-ion battery based on constant-voltage charging reconstruction. IEEE J. Emerg. Select. Top. Power Electron. (2021). https://doi.org/10.1109/JESTPE.2021.3098836
  22. Bian, X., Wei, Z., Li, W., Pou, J., Sauer, D.U., Liu, L.: State-of-health estimation of lithium-ion batteries by fusing an open circuit voltage model and incremental capacity analysis. IEEE Trans. Power Electron. 37(2), 2226-2236 (2022). https://doi.org/10.1109/TPEL.2021.3104723
  23. Yang, D., Zhang, X., Pan, R., Wang, Y., Chen, Z.: A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. J. Power Source. 384, 387-395 (2018). https://doi.org/10.1016/j.jpowsour.2018.03.015
  24. Chao, H., Jain, G., Schmidt, C., Strief, C., Sullivan, M.: Online estimation of lithium-ion battery capacity using sparse Bayesian learning. J. Power Source 289, 105-113 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.166. (ISSN 0378-7753)
  25. Ahmad, A.: Nearest neighbor based seismic attribute selection for effective porosity prediction. (2014). https://doi.org/10.3997/2214-4609.20141206.
  26. Chao, H., Jain, G., Zhang, P., Schmidt, C., Gomadam, P., Gorka, T.: Data-driven method based on particle swarm optimization and k-nearest neighbor regression for estimating capacity of lithium-ion battery. Appl. Energy 129, 49-55 (2014). https://doi.org/10.1016/j.apenergy.2014.04.077. (ISSN 0306-2619)
  27. You, G., Park, S., Dukjin, O.: Real-time state-of-health estimation for electric vehicle batteries: a data-driven approach. Appl. Energy 176, 92-103 (2016). https://doi.org/10.1016/j.apenergy.2016.05.051. (ISSN 03062619)
  28. Eddahech, A., Briat, O., Bertrand, N., Deletage, J.-Y., Vinassa, J.-M.: Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. Int. J. Electric. Power Energy Syst. 42(1), 487-494 (2012). https://doi.org/10.1016/j.ijepes.2012.04.050. (ISSN 0142-0615)
  29. Lin, H., Liang, T., Chen, S.: Estimation of battery state of health using probabilistic neural network. IEEE Trans. Industr. Inf. 9(2), 679-685 (2013). https://doi.org/10.1109/TII.2012.2222650
  30. Bai, G., Wang, P., Hu, C., Pecht, M.: A generic model-free approach for lithium-ion battery health management. App. Energy 135(C), 247-260 (2014). (Elsevier) https://doi.org/10.1016/j.apenergy.2014.08.059
  31. Kang, L.W., Zhao, X., Ma, J.: A new neural network model for the state-of-charge estimation in the battery degradation process. Appl. Energy 121, 20-27 (2014). https://doi.org/10.1016/j.apenergy.2014.01.066. (ISSN 0306-2619)
  32. Zhang, S., Zhai, B., Guo, X., Wang, K., Peng, N., Zhang, X.: Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks. J. Energy Storage 26, 100951 (2019). https://doi.org/10.1016/j.est.2019.100951. (ISSN2352-152X)
  33. Shen, S., Sadoughi, M., Chen, X., Hong, M., Hu, C. A deep learning method for online capacity estimation of lithium-ion batteries. J. Energy Storage 25, 100817 (2019). https://doi.org/10.1016/j.est.2019.100817