DOI QR코드

DOI QR Code

Bidirectional-friendly rectifier control strategy for advanced traction power supply system under unbalanced supply

  • Zeng, Li (School of Electrical Engineering, Southwest Jiaotong University) ;
  • Han, Pengcheng (School of Electrical Engineering, Southwest Jiaotong University) ;
  • Huang, Tongyue (School of Electrical Engineering, Southwest Jiaotong University) ;
  • He, Xiaoqiong (School of Electrical Engineering, Southwest Jiaotong University)
  • 투고 : 2021.10.15
  • 심사 : 2022.01.20
  • 발행 : 2022.05.20

초록

A bidirectional-friendly control strategy of three-phase NPC rectifier under unbalanced voltage for advanced traction power supply system (ATPSS) is proposed in this study. Negative-sequence current and DC voltage ripple are restrained effectively with very low total harmonic distortions (THDs) on the basis of predictive current control theory. First, power balance equation containing only positive-sequence voltage of the three-phase grid voltage is derived, and the secondary fluctuation of instantaneous active and reactive powers on the grid side is analyzed and calculated. Second, expression of the DC-side voltage fluctuation is deduced to fix the calculation of Pref for the optimization of the control system. Third, command current that can achieve bidirectional-friendly control is calculated according to the power expression and the reference voltage value is obtained on the basis of the predictive current control principle. Finally, simulations and experimental results verify the correctness of the theoretical analysis and the effectiveness of the proposed strategy.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (Grant no. 52077181).

참고문헌

  1. He, X., Shu, Z., Peng, X., et al.: Advanced co-phase traction power supply system based on three-phase to single-phase converter. IEEE Trans. Power Electron. 29(10), 5323-5333 (2014) https://doi.org/10.1109/TPEL.2013.2292612
  2. Han, P., He, X., Ren, H., et al.: Fault diagnosis and system reconfiguration strategy of a single-phase three-level neutral-point-clamped cascaded inverter. IEEE Trans. Ind. Appl. 55(4), 3863-3875 (2019) https://doi.org/10.1109/tia.2019.2901359
  3. Zhang, Y., Liu, J., Yang, H., Gao, J.: Direct power control of pulse width modulated rectifiers without dc voltage oscillations under unbalanced grid conditions. IEEE Trans. Industr. Electron. 65(10), 7900-7910 (2018) https://doi.org/10.1109/tie.2018.2807421
  4. Zhou, D., Tu, P., Tang, Y.: Multivector model predictive power control of three-phase rectifiers with reduced power ripples under nonideal grid conditions. IEEE Trans. Industr. Electron. 65(9), 6850-6859 (2018) https://doi.org/10.1109/tie.2018.2798583
  5. Jiang, W., Wang, Y., Wang, J., Wang, L., Huang, H.: Maximizing instantaneous active power capability for PWM rectifier under unbalanced grid voltage dips considering the limitation of phase current. IEEE Trans. Industr. Electron. 63(10), 5998-6009 (2016) https://doi.org/10.1109/TIE.2016.2577544
  6. Malinowski, M., Kazmierkowski, M.P., Trzynadlowski, A.M.: A comparative study of control techniques for PWM rectifiers in ac adjustable speed drives. IEEE Trans. Power Electron. 18(6), 1390-1396 (2003) https://doi.org/10.1109/TPEL.2003.818871
  7. Zarif, M., Monfared, M.: Step-by-step design and tuning of VOC control loops for grid connected rectifiers. Int. J. Electr. Power Energy Syst. 64, 708-713 (2015) https://doi.org/10.1016/j.ijepes.2014.07.078
  8. Rahoui, A., Bechouche, A., Seddiki, H., Abdeslam, D.O.: Grid voltages estimation for three-phase PWM rectifiers control without ac voltage sensors. IEEE Trans. Power Electron. 33(1), 859-875 (2018) https://doi.org/10.1109/TPEL.2017.2669146
  9. Norniella, J.G., et al.: Multiple switching tables direct power control of active front-end rectifiers. IET Power Electronics. 7(6), 1578-1589 (2014) https://doi.org/10.1049/iet-pel.2013.0492
  10. Liu, B., Song, W., Ma, J., Feng, X., Li, W.: Dynamic performance improvement of single-phase PWM converters with power hysteresis control scheme. IET Power Electron. 11(12), 1894-1902 (2018) https://doi.org/10.1049/iet-pel.2017.0624
  11. Gui, Y., Li, M., Lu, J., Golestan, S., Guerrero, J.M., Vasquez, J.C.: A voltage modulated DPC approach for three-phase PWM rectifier. IEEE Trans. Industr. Electron. 65(10), 7612-7619 (2018) https://doi.org/10.1109/tie.2018.2801841
  12. Zhang, Y., Xie, W., Zhang, Y.: Deadbeat direct power control of three-phase pulse-width modulation rectifiers. IET Power Electronics. 7(6), 1340-1346 (2014) https://doi.org/10.1049/iet-pel.2013.0563
  13. Alam, K.S., Xiao, D., Parvez Akter, M., Zhang, D., Fletcher, J., Rahman, M.F.: Modified MPC with extended VVs for grid-connected rectifier. IET Power Electronics. 11(12), 1926-1936 (2018) https://doi.org/10.1049/iet-pel.2017.0883
  14. Gao, H., Wu, B., Xu, D., Pande, M., Aguilera, R.P.: Model predictive control scheme with active damping function for current source rectifiers. IET Power Electronics. 10(7), 717-725 (2017) https://doi.org/10.1049/iet-pel.2016.0718
  15. Falkowski, P., Sikorski, A.: Finite control set model predictive control for grid-connected AC-DC converters with LCL filter. IEEE Trans. Industr. Electron. 65(4), 2844-2852 (2018) https://doi.org/10.1109/tie.2017.2750627
  16. Pavlou, K.G., Vasiladiotis, M., Manias, S.N.: Constrained model predictive control strategy for single-phase switch-mode rectifiers. IET Power Electronics. 5(1), 31-40 (2012) https://doi.org/10.1049/iet-pel.2010.0253
  17. Moran, L., Ziogas, P.D., Joos, G.: Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions. IEEE Trans. Ind. Appl. 28(6), 1286-1293 (1992) https://doi.org/10.1109/28.175279
  18. Rioual, P., Pouliquen, H., Louis, J.P.: Regulation of a PWM rectifier in the unbalanced network state using a generalized model. IEEE Trans. Power Electron. 11(3), 495-502 (1996) https://doi.org/10.1109/63.491644
  19. Song, H.S., Nam, K.: Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans. Industr. Electron. 46(5), 953-959 (1999) https://doi.org/10.1109/41.793344
  20. Li, Z., Li, Y., Wang, P., et al.: Control of three-phase boost-type PWM rectifier in stationary frame under unbalanced input voltage. IEEE Trans. Power Electron. 25(10), 2521-2530 (2010) https://doi.org/10.1109/TPEL.2010.2049030
  21. Suul, J.A., Luna, A., Rodriguez, P., Undeland, T.: Voltage-sensor-less synchronization to unbalanced grids by frequency-adaptive virtual flux estimation. IEEE Trans. Industr. Electron. 59(7), 2910-2923 (2012) https://doi.org/10.1109/TIE.2011.2168793
  22. Yang, H., Zhang, Y., Liang, J., Gao, J., Walker, P.D., Zhang, N.: Sliding-mode observer based voltage-sensorless model predictive power control of PWM rectifier under unbalanced grid conditions. IEEE Trans. Indust. Electron. 65(7), 5550-5560 (2018) https://doi.org/10.1109/tie.2017.2774730
  23. Nian, H., Cheng, P., Zhu, Z.Q.: Coordinated direct power control of DFIG system without phase-locked loop under unbalanced grid voltage conditions. IEEE Trans. Power Electron. 31(4), 2905-2918 (2016) https://doi.org/10.1109/TPEL.2015.2453127
  24. Zhang, Y., Long, J., Zhang, Y., Lu, T., Zhao, Z., Jin, L.: TABLEBASED direct power control for three-level neutral point-clamped pulse-width modulated rectifier. IET Power Electron. 6(8), 1555-1562 (2013) https://doi.org/10.1049/iet-pel.2012.0431
  25. Hu, J., Zhu, J., Dorrell, D.G.: In-depth study of direct power control strategies for power converters. IET Power Electron. 7(7), 1810-1820 (2014) https://doi.org/10.1049/iet-pel.2013.0632