DOI QR코드

DOI QR Code

Novel soft-switching high voltage gain converter with quasi-resonant boost stages

  • Ying, Gengning (School of Electric Power Engineering, South China University of Technology) ;
  • Zeng, Jun (School of Electric Power Engineering, South China University of Technology) ;
  • Hu, Renjun (School of Electric Power Engineering, South China University of Technology) ;
  • Liu, Junfeng (South China University of Technology)
  • Received : 2021.12.09
  • Accepted : 2022.03.14
  • Published : 2022.07.20

Abstract

To connect low voltage renewable energy sources to the DC bus of a power microgrid system for wider applications, a high efficiency, high step-up, and reasonably priced dc-dc converter is in need as an interface. In this study, a novel high voltage gain dc-dc converter with series LC quasi-resonant boost stages is proposed. Three resonant loops with quasi-resonant operation are used to achieve a high gain with a low duty cycle. All three of the diodes can turn of with zero current switching (ZCS), which avoids the reverse recovery problem. In addition, both of the switches achieve the zero voltage switching (ZVS) condition. The circulating current used to achieve soft-switching is recycled by the output capacitor. The voltage gain can be further improved when soft-switching is not considered, which is of practical use in the case of an emergency. Moreover, the input source, the output, and the switches have a common ground to help simplify the driver of the switches and to expand the scope of transformer-less applications. The operation principle and a mathematical analysis of the proposed topology have been described in detail in this study. In addition, a 200 W prototype is built and tested to verify the main features of the proposed converter.

Keywords

Acknowledgement

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China No. 62173148, 51877085)

References

  1. Yang, N., Zeng, J., Hu, R., Liu, J.: Novel non-isolated high step-up converter with fewer passive devices and low voltage stress of power switches. IET Power Electron. 13(11), 2302-2311 (2020) https://doi.org/10.1049/iet-pel.2019.1199
  2. Wang, X., Tang, G., He, Z., Wei, X., Pang, H., Xiao, X.: Modeling and control of an isolated module multilevel DC/DC converter for DC grid. CSEE J. Power Energy Syst. 3(2), 150-159 (2017) https://doi.org/10.17775/cseejpes.2017.0019
  3. Chang, C.-H., Chang, E.-C., Cheng, H.-L.: A high-efficiency solar array simulator implemented by an LLC resonant dc-dc converter. IEEE Trans. Power Electron. 28(6), 3039-3046 (2013) https://doi.org/10.1109/TPEL.2012.2205273
  4. Li, W., He, X.: Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 12 (2011)
  5. Yan, Z., Zeng, J., Guo, Z., Hu, R., Liu, J.: A soft-switching bidirectional dc-dc converter with high voltage-gain and low voltage stress for energy storage systems. IEEE Trans. Ind. Electron. 68, 1 (2020)
  6. Marzang, V., Hosseini, S.H., Rostami, N., Alavi, P., Mohseni, P., Hashemzadeh, S.M.: A high step-up nonisolated dc-dc converter with flexible voltage gain. IEEE Trans. Power Electron. 35(10), 12 (2020)
  7. Zareie, M., Poorali, B., Eren, S., Pahlevani, M.: A new dc-dc converter with direct power transfer capability. IEEE Trans. Power Electron. 36, 1 (2020)
  8. Torkan, A., Ehsani, M.: A novel nonisolated Z-source dc-dc converter for photovoltaic applications. IEEE Trans. Ind. Appl. 54(5), 4574-4583 (2018) https://doi.org/10.1109/tia.2018.2833821
  9. Yang, M.-K., Choi, W.-Y.: Actively clamped two-switch flyback converter with high efficiency. J. Power Electron. 15(5), 1200-1206 (2015) https://doi.org/10.6113/JPE.2015.15.5.1200
  10. Zhang, F., Wang, X.: A hybrid boost-flyback/flyback microinverter for photovoltaic applications. IEEE Trans. Ind. Electron. 67(1), 11 (2020) https://doi.org/10.1109/TED.2019.2954301
  11. Wei, Y., Luo, Q., Wang, Z., Mantooth, H.A.: A complete step-by-step optimal design for LLC resonant converter. IEEE Trans. Power Electron. 36(4), 3674-3691 (2021) https://doi.org/10.1109/TPEL.2020.3015094
  12. Lee, J.-Y., Hwang, S.-N.: Non-isolated high-gain boost converter using voltage-stacking cell. Electron. Lett. 44(10), 644 (2008) https://doi.org/10.1049/el:20080371
  13. Giaouris, D., Banerjee, S., Zahawi, B., Pickert, V.: Stability analysis of the continuous-conduction-mode buck converter via Filippov's method. IEEE Trans. Circ. Syst. I Regul. Pap. 55(4), 1084-1096 (2008) https://doi.org/10.1109/TCSI.2008.916443
  14. Wu, T.-F., Lai, Y.-S., Hung, J.-C., Chen, Y.-M.: Boost converter with coupled inductors and buck-boost type of active clamp. IEEE Trans. Ind. Electron. 55(1), 154-162 (2008) https://doi.org/10.1109/TIE.2007.903925
  15. Hu, R., Zeng, J., Liu, J., Cheng, K.W.E.: A non-isolated bidirectional dc-dc converter with high voltage conversion ratio based on coupled-inductor and switched-capacitor. IEEE Trans. Ind. Electron. 68(2), 1155-1165 (2020) https://doi.org/10.1109/tie.2020.2967667
  16. Rahimi, A., Mohammadi, M.R.: Zero-voltage-transition synchronous DC DC converters with coupled inductors. J. Power Electron. 16(1), 74-83 (2016) https://doi.org/10.6113/JPE.2016.16.1.74
  17. Ajami, A., Ardi, H., Farakhor, A.: A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications. IEEE Trans. Power Electron. 30(8), 4255-4263 (2015) https://doi.org/10.1109/TPEL.2014.2360495
  18. Zhang, Y., Liu, Q., Gao, Y., Li, J., Sumner, M.: Hybrid switched-capacitor/switched-quasi-Z-source bidirectional dc-dc converter with a wide voltage gain range for hybrid energy sources EVs. IEEE Trans. Ind. Electron. 66(4), 11 (2019)
  19. Faridpak, B., Bayat, M., Nasiri, M., Samanbakhsh, R., Farrokhifar, M.: Improved hybrid switched inductor/switched capacitor dc-dc converters. IEEE Trans. Power Electron. 36(3), 3053-3062 (2021) https://doi.org/10.1109/tpel.2020.3014278
  20. Deng, J., Wang, H., Shang, M.: A ZVS three-port DC/DC converter for high-voltage bus-based photovoltaic systems. IEEE Trans. Power Electron. 34(11), 10688-10699 (2019) https://doi.org/10.1109/tpel.2019.2895976
  21. Priyadarshi, A., Kar, P.K., Karanki, S.B.: Switched capacitor based high gain dc-dc converter topology for multiple voltage conversion ratios with reduced output impedance. J. Power Electron. 19(3), 676-690 (2019) https://doi.org/10.6113/JPE.2019.19.3.676
  22. Zhang, X., Wang, B., Manandhar, U., Gooi, H.B., Foo, G.: A model predictive current controlled bidirectional three-level DC/DC converter for hybrid energy storage system in DC microgrids. IEEE Trans. Power Electron. 34(5), 4025-4030 (2019) https://doi.org/10.1109/tpel.2018.2873765
  23. Bhaskar, M.S., Almakhles, D.J., Padmanaban, S., Blaabjerg, F., Subramaniam, U., Ionel, D.M.: Analysis and investigation of hybrid dc-dc non-isolated and non-inverting Nx interleaved multilevel boost converter Nx-IMBC) for high voltage step-up applications: hardware implementation. IEEE Access 8, 87309-87328 (2020) https://doi.org/10.1109/access.2020.2992447
  24. Prabhala, V.A.K., Fajri, P., Gouribhatla, V.S.P., Baddipadiga, B.P., Ferdowsi, M.: A dc-dc converter with high voltage gain and two input boost stages. IEEE Trans. Power Electron. 31(6), 4206-4215 (2016) https://doi.org/10.1109/TPEL.2015.2476377
  25. Nemati, M., Hosseini, S.H., Sharifan, M.B.B., Sabahi, M.: Common-ground non-isolated high-gain DC/DC converter for low power distributed generation photovoltaic systems. IET Power Electron. 13(12), 2589-2597 (2020) https://doi.org/10.1049/iet-pel.2020.0175
  26. Forouzesh, M., Siwakoti, Y.P., Blaabjerg, F.: High-efciency high step-up dc-dc converter with dual coupled inductors for grid-connected photovoltaic systems. IEEE Trans. Power Electron. 33(7), 16 (2018)
  27. Radmanesh, H., Rahimi, M.: A common ground dual-output quasi-Z-source dc-dc converter. In: 2019 27th Iranian conference on electrical engineering (ICEE), Apr. 2019, pp. 570-575
  28. Zhang, Y., Liu, Q., Li, J., Sumner, M.: A common ground switched-quasi-Z-source bidirectional dc-dc converter with wide-voltage-gain range for EVs with hybrid energy sources. IEEE Trans. Ind. Electron. 65(6), 5188-5200 (2018) https://doi.org/10.1109/tie.2017.2756603
  29. Pires, V.F., Cordeiro, A., Foito, D., Silva, J.F.: High step-up dc-dc converter for fuel cell vehicles based on merged quadratic Boost-Cuk. IEEE Trans. Veh. Technol. 68(8), 7521-7530 (2019) https://doi.org/10.1109/tvt.2019.2921851
  30. Akhormeh, A.R.N., Abbaszadeh, K., Moradzadeh, M., Shahirinia, A.: High-gain bidirectional quadratic DC-DC converter based on coupled inductor with current ripple reduction capability. IEEE Trans. Ind. Electron. 68(9), 7826-7837 (2020)
  31. Lakshmi, M., Hemamalini, S.: Nonisolated high gain dc-dc converter for DC microgrids. IEEE Trans. Ind. Electron. 65(2), 1205-1212 (2018) https://doi.org/10.1109/tie.2017.2733463