DOI QR코드

DOI QR Code

A voltage-fed single-stage multi-input inverter for hybrid wind/photovoltaic power generation system

  • Zeng, Hanchao (School of Electrical Engineering and Automation, Xiamen University of Technology) ;
  • Chen, Daolian (College of Electrical Engineering, Qingdao University)
  • 투고 : 2021.10.28
  • 심사 : 2022.02.02
  • 발행 : 2022.04.20

초록

A voltage-fed single-stage multi-input inverter for hybrid wind/photovoltaic power generation system is proposed, and its circuit topology, control strategy, and derivation of multiple duty ratios are studied in detail. Also, the methods to avoid turn-off voltage spike of selection switches and magnetic saturation of line-frequency (LF) transformer are fully investigated. The maximum power point tracking outer loop/grid-connected current (GCC) inner-loop control strategy decomposes the GCC according to the maximum power provided by each input source, to ensure the power distribution of each source and the direct control of GCC. By adjusting the drive signals of selection switches, the feedback path for inductor current is ensured and the voltage spike is intrinsically eliminated. The introduction of the DC bias correction loop for GCC restrains the magnetic saturation of the LF transformer. Simulation and experimental results of the designed 3 kW laboratory prototype verify the feasibility and validity of the theoretical analysis.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (51537001).

참고문헌

  1. Chishti, F., Murshid, S., Singh, B.: Development of wind and solar based AC microgrid with power quality improvement for local nonlinear load using MLMS. IEEE Trans. Ind. Appl. 55(6), 7134-7145 (2019) https://doi.org/10.1109/tia.2019.2923575
  2. Bhaumik, D., Crommelin, D., Zwart, B.: Hidden markov models for wind farm power output. IEEE Trans. Sustain. Energy 10(2), 533-539 (2019) https://doi.org/10.1109/tste.2018.2834475
  3. Jiang, J., Zhang, T., Chen, D.: Analysis, design, and implementation of a differential power processing DMPPT with multiple Buck-boost choppers for photovoltaic module. IEEE Trans. Power Electron. 36(9), 10214-10223 (2021) https://doi.org/10.1109/TPEL.2021.3063230
  4. Rahbar, K., Chai, C.C., Zhang, R.: Energy cooperation optimization in microgrids with renewable energy integration. IEEE Trans. Smart Grid. 9(2), 1482-1493 (2018) https://doi.org/10.1109/tsg.2016.2600863
  5. Singh, B., Chishti, F., Murshid, S.: Disturbance rejection through adaptive frequency estimation observer for wind-solar integrated AC microgrid. IEEE Trans. Ind. Inf. 15(11), 6035-6047 (2019) https://doi.org/10.1109/tii.2019.2923375
  6. Elnozahy, A., Yousef, A.M., Abo-Elyousr, F.K., Mohamed, M., Mohamed Abdelwahab, S.A.: Performance improvement of hybrid renewable energy sources connected to the grid using artificial neural network and sliding mode control. J. Power Electron. 21(8), 1166-1179 (2021) https://doi.org/10.1007/s43236-021-00242-8
  7. An, Y., Zhao, Z.H., Wang, S.K.: Coordinative optimization of hydro-photovoltaic-wind-battery complementary power stations. CSEE J. Power Energy Syst. 6(2), 410-418 (2020)
  8. Martin, A.D., Cano, J.M., Silva, J.F.A.: Back stepping control of smart grid-connected distributed photovoltaic power supplies for telecom equipment. IEEE Trans. Energy Convers. 30(4), 1496-1504 (2015) https://doi.org/10.1109/TEC.2015.2431613
  9. Dragicevic, T., Lu, X., Vasquez, J.C.: DC microgrids-part II: a review of power architectures, applications, and standardization issues. IEEE Trans. Power Electron. 31(5), 3528-3549 (2016) https://doi.org/10.1109/TPEL.2015.2464277
  10. Lee, C.G., Park, J.H., Park, J.H.: Buck-flyback (fly-buck) standalone photovoltaic system for charge balancing with differential power processor circuit. J. Power Electron. 19(4), 1011-1019 (2019) https://doi.org/10.6113/JPE.2019.19.4.1011
  11. Li, X.L., Dong, Z., Tse, C.K.: Single-inductor multi-input multioutput DC-DC converter with high flexibility and simple control. IEEE Trans. Power Electron. 35(12), 13104-13114 (2020) https://doi.org/10.1109/tpel.2020.2991353
  12. Athikkal, S., Kumar, G.G., Sundaramoorthy, K.: A non-isolated bridge-type DC-DC converter for hybrid energy source integration. IEEE Trans. Ind. Appl. 55(4), 4033-4043 (2019) https://doi.org/10.1109/tia.2019.2914624
  13. Chander, A.H., Sahu, L.K., Jalhotra, M.: Dual input converter fed transformerless multilevel inverter for standalone PV application. In: Proceedings of IEEE International Conference on Computing, Power and Communication Technologies, pp. 487-491 (2019)
  14. Mangu, B., Akshatha, S., Suryanarayana, D.: Grid-connected PV-wind-battery-based multi-input transformer-coupled bidirectional DC-DC converter for household applications. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 1086-1095 (2016) https://doi.org/10.1109/JESTPE.2016.2544789
  15. Cho, C.N.J., Kim, Y.S., Oh, C.Y.: Design of multiple-input multiple-output flyback converter for hybrid renewable energy system. In: Proceedings of IEEE International Conference on Electrical Machines and Systems, pp. 246-251 (2013)
  16. He, H., Chen, D.L., Qiu, Y.H.: Multi-winding Boost Multi-input DC-DC Converter Type Distributed Generation System. In: Proceedings of International Conference on Power Electronics and ECCE Asia, pp. 44-49 (2019)
  17. Jafari, M., Malekjamshidi, Z.: Gang Lei: Design and implementation of an amorphous high-frequency transformer coupling multiple converters in a smart microgrid. IEEE Trans. Ind. Electron. 64(2), 1028-1037 (2017) https://doi.org/10.1109/TIE.2016.2583401
  18. Wang, B., Zhang, X., Ye, J.: Deadbeat control for a single-inductor multiple-input multiple-output DC-DC Converter. IEEE Trans. Power Electron. 34(2), 1914-1924 (2019) https://doi.org/10.1109/tpel.2018.2832243
  19. Lapena, O.L.: Time-division multiplexing control of multi-input converters for low-power solar energy harvesters. IEEE Trans. Ind. Electron. 65(12), 9668-9676 (2018) https://doi.org/10.1109/tie.2018.2821622
  20. Dastagiri Reddy, B., Selvan, M.P., Moorthi, S.: Design, operation, and control of S3 inverter for single-phase microgrid applications. IEEE Trans. Ind. Electron. 62(9), 5569-5577 (2015) https://doi.org/10.1109/TIE.2015.2414898