Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2021R1A2C2005996).
References
- Lesnicar, A., Marquardt, R.: An innovative modular multilevel converter topology suitable for a wide power range. In: 2003 IEEE Bologna PowerTech, vol. 3, pp. 272-277 (2003)
- Allebrod, S., Hamerski, R., Marquardt, R.: New transformerless, scalable modular multilevel converters for HVDC-transmission. In: Proc. IEEE PESC, pp. 174-179 (2008)
- Xia, X., et al.: Modular multilevel converter predictive control strategy based on energy balance. J. Power Electron. 21(5), 757-767 (2021) https://doi.org/10.1007/s43236-021-00225-9
- Luo, W., Ma, Y., Zheng, C.: Selection-based capacitor voltage balancing control for modular multilevel converters. J. Power Electron. 21(10), 1427-1438 (2021) https://doi.org/10.1007/s43236-021-00288-8
- Peng, F.Z., Lai, J., Mckeever, J.W., Vancoevering, J.: A multilevel voltage-source inverter with separate DC sources for static var generation. IEEE Trans. Ind. Appl. 32(5), 1130-1138 (1996) https://doi.org/10.1109/28.536875
- Hiller, M., Krug, D., Sommer, R., Rohner, S.: A new highly modular medium voltage converter topology for industrial drive applications. In: Proc. IEEE EPE, pp. 1-10 (2009)
- Korn, A.J., Winkelnkemper, M., Steimer, P.: Low output frequency operation of the modular multi-level converter. In: Proc. IEEE ECCE, pp. 3993-3997 (2010)
- Hagiwara, M., Hasegawa, I., Akagi, H.: Start-up and low-speed operation of an electric motor driven by a modular multilevel cascade inverter. IEEE Trans. Ind. Appl. 49(4), 1473-1480 (2013)
- Antonopoulos, A., Angquist, L., Norrga, S., Ilves, K., Harnefors, L., Nee, H.P.: Modular multilevel converter AC motor drives with constant torque from zero to nominal speed. IEEE Trans. Ind. Appl. 50(3), 1982-1993 (2014) https://doi.org/10.1109/TIA.2013.2286217
- Zhao, F., Xiao, G., Zhu, T., Zheng, X., Wu, Z., Zhao, T.: A coordinated strategy of low-speed and start-up operation for medium-voltage variable-speed drives with a modular multilevel converter. IEEE Trans. Power Electron. 35(1), 709-724 (2020) https://doi.org/10.1109/tpel.2019.2913696
- Wang, L., Zhang, L., Xiong, Y., Ma, R.: Low-frequency suppression strategy based on predictive control model for modular multilevel converters. J. Power Electron. 21(10), 1407-1415 (2021) https://doi.org/10.1007/s43236-021-00286-w
- Du, S., Wu, B., Zargari, N.R., Cheng, Z.: A flying-capacitor modular multilevel converter for medium-voltage motor drive. IEEE Trans. Power Electron. 32(3), 2081-2089 (2017) https://doi.org/10.1109/TPEL.2016.2565510
- Le, D.D., Lee, D.-C.: Current stress reduction and voltage THD improvement of FC-MMCs for AC machine drive applications. IEEE Trans. Ind. Electron. 69(1), 90-100 (2022) https://doi.org/10.1109/TIE.2021.3050394
- Le, D.D., Lee, D.-C.: A modular multilevel converter topology with novel middle submodules to reduce capacitor voltage fluctuations. IEEE Trans. Power Electron. 37(1), 70-75 (2022) https://doi.org/10.1109/TPEL.2021.3101884
- Shao, S., Wheeler, P.W., Clare, J.C., Watson, A.J.: Fault detection for modular multilevel converters based on sliding mode observer. IEEE Trans. Power Electron. 28(11), 4867-4872 (2013) https://doi.org/10.1109/TPEL.2013.2242093
- Choi, U.-M., Blaabjerg, F., Lee, K.-B.: Study and handling methods of power IGBT module failures in power electronic converter systems. IEEE Trans. Power Electron. 30(5), 2517-2533 (2015) https://doi.org/10.1109/TPEL.2014.2373390
- Liu, C., et al.: Fault localization strategy for modular multilevel converters under submodule lower switch open-circuit fault. IEEE Trans. Power Electron. 35(5), 5190-5204 (2020) https://doi.org/10.1109/tpel.2019.2941129
- Zhang, J., Hu, X., Xu, S., Zhang, Y., Chen, Z.: Fault diagnosis and monitoring of modular multilevel converter with fast response of voltage sensors. IEEE Trans. Industr. Electron. 67(6), 5071-5080 (2020) https://doi.org/10.1109/tie.2019.2928248
- Deng, F., Chen, Z., Khan, M.R., Zhu, R.: Fault detection and localization method for modular multilevel converters. IEEE Trans. Power Electron. 30(5), 2721-2732 (2015) https://doi.org/10.1109/TPEL.2014.2348194
- Li, B., Shi, S., Wang, B., Wang, G., Wang, W., Xu, D.: Fault diagnosis and tolerant control of single IGBT open-circuit failure in modular multilevel converters. IEEE Trans. Power Electron. 31(4), 3165-3176 (2016) https://doi.org/10.1109/TPEL.2015.2454534
- Abdelsalam, M., Marei, M.I., Tennakoon, S.B.: An integrated control strategy with fault detection and tolerant control capability based on capacitor voltage estimation for MMCs. IEEE Trans. Ind. Appl. 53(3), 2840-2851 (2017) https://doi.org/10.1109/TIA.2016.2608940
- Li, B., Xu, Z., Ding, J., Xu, D.: Fault-tolerant control of medium-voltage modular multilevel converters with minimum performance degradation under submodule failures. IEEE Access 6, 11772-11781 (2018) https://doi.org/10.1109/access.2018.2811904
- Wang, J., Tang, Y.: A fault-tolerant operation method for medium voltage MMCs with phase-shifted carrier modulation. IEEE Trans. Power Electron. 34(10), 9459-9470 (2019) https://doi.org/10.1109/tpel.2018.2890536
- Li, K., Yuan, L., Zhao, Z., Lu, S., Zhang, Y.: Fault-tolerant control of MMC with hot reserved submodules based on carrier phase shift modulation. IEEE Trans. Power Electron. 32(9), 6778-6791 (2017) https://doi.org/10.1109/TPEL.2016.2628762
- Yang, S., Tang, Y., Wang, P.: Seamless fault-tolerant operation of a modular multilevel converter with switch open-circuit fault diagnosis in a distributed control architecture. IEEE Trans. Power Electron. 33(8), 7058-7070 (2018) https://doi.org/10.1109/TPEL.2017.2756849
- Lo, Y., Shi, X., Liu, B., Wang, F., Lei, W.: Maximum modulation index for modular multilevel converter with circulating current control. In: 2014 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 491-498 (2014)
- Harnefors, L., Antonopoulos, A., Norrga, S., Angquist, L., Nee, H.P.: Dynamic analysis of modular multilevel converters. IEEE Trans. Ind. Electron. 60(7), 2526-2537 (2013) https://doi.org/10.1109/TIE.2012.2194974