DOI QR코드

DOI QR Code

Full closed loop-based dynamic accuracy enhancement for elastic joints

  • Liu, Haitao (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University) ;
  • Wang, Yan (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University) ;
  • Shan, Xianlei (Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University)
  • Received : 2021.10.04
  • Accepted : 2022.03.06
  • Published : 2022.06.20

Abstract

Owing to the elasticity of transmission systems, actuated joints suffer from dynamic errors that seriously affect the tracking accuracy. Mainly drawing on the full closed loop control strategy, this paper focuses on the dynamic accuracy enhancement of elastic joints. Having proposed a simplified dynamic error modelling method for elastic joints with cascade control, an analytical dynamic error model of the servo drive system is built, allowing the revelation of the influence mechanisms of semi- and full closed loop control schemes on dynamic errors. The dynamic error model indicates that a full closed loop control scheme with a large position loop gain can effectively reduce the elasticity-caused dynamic error. To overcome the strict limitation on the position loop gain of traditional full closed loop control, an additional speed feedback is used to improve the dynamic error reduction capability. Experimental results show that the dynamic error can be dramatically reduced, resulting in a remarkable improvement of tracking accuracy of elastic joints.

Keywords

Acknowledgement

The paper is partially supported by the National Natural Science Foundation of China (Grant Number 51805361), the Natural Science Foundation of Tianjin (Grant Number 18JCQNJC04900), the State Key Laboratory of Robotics and System (HIT) (Grant Number SKLRS-2018-KF-09), and the China Postdoctoral Science Foundation (Grant Number 2018M640233).

References

  1. Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer-Verlag, New York (2007)
  2. Biagiotti, L., Moriello, L., Melchiorri, C.: Improving the accuracy of industrial robots via iterative reference trajectory modification. IEEE Trans. Control Syst. Technol. 28(3), 831-843 (2020) https://doi.org/10.1109/tcst.2019.2892929
  3. Shang, W.W., Cong, S., Ge, Y.: Coordination motion control in the task space for parallel manipulators with actuation redundancy. IEEE Trans. Autom. Sci. Eng. 10(3), 665-673 (2013) https://doi.org/10.1109/TASE.2012.2210281
  4. Mokhtari, M., Taghizadeh, M., Mazare, M.: Hybrid adaptive robust control based on CPG and ZMP for a lower limb exoskeleton. Robotica 39(2), 181-199 (2021) https://doi.org/10.1017/S0263574720000260
  5. Dumanli, A., Sencer, B.: Pre-compensation of servo tracking errors through data-based reference trajectory modification. CIRP Ann-Manuf. Technol. 68(1), 397-400 (2019) https://doi.org/10.1016/j.cirp.2019.03.017
  6. Li, F.H., Jiang, Y., Li, T.M., Ehmann, K.F.: Compensation of dynamic mechanical tracking errors in ball screw drives. Mechatronics 55, 27-37 (2018) https://doi.org/10.1016/j.mechatronics.2018.08.004
  7. Shan, X.L., Cheng, G.: Structural error and friction compensation control of a 2(3PUS+S) parallel manipulator. Mech. Mach. Theory 124, 92-103 (2018) https://doi.org/10.1016/j.mechmachtheory.2018.02.004
  8. Tian, W.J., Yin, F.W., Liu, H.T., Li, J.H., Li, Q., Huang, T., Chetwynd, D.G.: Kinematic calibration of a 3-DOF spindle head using a double ball bar. Mech. Mach. Theory 102, 167-178 (2016) https://doi.org/10.1016/j.mechmachtheory.2016.04.008
  9. Zhu, W.D., Li, G.H., Dong, H.Y., Ke, Y.L.: Positioning error compensation on two-dimensional manifold for robotic machining. Robot. Comput.-Integr. Manuf. 59, 394-405 (2019) https://doi.org/10.1016/j.rcim.2019.05.013
  10. Li, R., Zhao, Y.: Dynamic error compensation for industrial robot based on thermal effect model. Measurement 88, 113-120 (2016) https://doi.org/10.1016/j.measurement.2016.02.038
  11. Lyu, D., Liu, Q., Liu, H., Zhao, W.H.: Dynamic error of CNC machine tools: a state-of-the-art review". Int. J. Adv. Manuf. Technol. 106(5-6), 1869-1891 (2019) https://doi.org/10.1007/s00170-019-04732-9
  12. Dai, L., Yu, Y.T., Zhai, D.H., Huang, T., Xia, Y.Q.: Robust model predictive tracking control for robot manipulators with disturbances. IEEE Trans. Ind. Electron. 68(5), 4288-4297 (2021) https://doi.org/10.1109/TIE.2020.2984986
  13. Yang, X., Zhu, L.M., Ni, Y.B., Liu, H.T., Zhu, W.L., Shi, H., Huang, T.: Modified robust dynamic control for a diamond parallel robot. IEEE-ASME. T Mech. 24(3), 959-968 (2019) https://doi.org/10.1109/TMECH.2019.2914165
  14. Xie, L.B., Qiu, Z.C., Zhang, X.M.: Development of a 3-PRR precision tracking system with full closed-loop measurement and control. Sensors 19(8), 1756 (2019) https://doi.org/10.3390/s19081756
  15. Dumanli, A., Sencer, B.: Optimal high-bandwidth control of ball-screw drives with acceleration and jerk feedback. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 54, 254-268 (2018)
  16. Rad, S.A., Tamizi, M.G., Azmoun, M., Masouleh, M.T., Kalhor, A.: Experimental study on robust adaptive control with insufficient excitation of a 3-DOF spherical parallel robot for stabilization purposes. Mech. Mach. Theory 153, 104026 (2020) https://doi.org/10.1016/j.mechmachtheory.2020.104026
  17. Sun, W., Lin, J.W., Su, S.F., Wang, N., Er, M.J.: Reduced adaptive fuzzy decoupling control for lower limb exoskeleton. IEEE T. Cybern. 51(3), 1099-1109 (2021) https://doi.org/10.1109/TCYB.2020.2972582
  18. Liu, H.T., Liu, H.R., Shan, X.L.: Linear active disturbance rejection control with torque compensation for electric load simulator. J Power Electron 21, 195-203 (2021) https://doi.org/10.1007/s43236-020-00168-7
  19. Takahashia, Y., Takahashi, H.: Precise positioning control with double feedback loop for ultralarge scale integrated manufacturing machine. Rev. Sci. Instrum. 73(7), 2791 (2002) https://doi.org/10.1063/1.1484239
  20. Sun, Z., Pritschow, G., Lechler, A.: Enhancement of feed drive dynamics using additional table speed feedback. CIRP Ann-Manuf. Technol. 65, 357-360 (2016) https://doi.org/10.1016/j.cirp.2016.04.099
  21. Gordon, D.J., Erkorkmaz, K.: Accurate control of ball screw drives using pole-placement vibration damping and a novel trajectory prefilter. Precis. Eng.-J. Int. Soc. Precis. Eng. 37(2), 308-322 (2013)
  22. Ellis, G.: Control system design guide, 4th edn. Academic Press, Cambridge (2012)
  23. Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot modeling and control. John Wiley & Sons, Hoboken (2006)
  24. Guo, B.Z., Han, J.Q., Xi, F.B.: Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation. Int J Syst Sci. 33(5), 351-358 (2002) https://doi.org/10.1080/00207720210121771