DOI QR코드

DOI QR Code

Operating area analysis and design of WPT systems with MEPT control

  • Gao, Weipeng (School of Electrical Engineering, Xinjiang University) ;
  • Fan, Yanfang (School of Electrical Engineering, Xinjiang University) ;
  • Wang, Chengxuan (School of Electrical Engineering, Xinjiang University) ;
  • Wang, Kangping (School of Electrical Engineering, Xi'an Jiaotong University) ;
  • Li, Hongchang (School of Electrical Engineering, Xinjiang University)
  • Received : 2021.09.16
  • Accepted : 2022.01.17
  • Published : 2022.04.20

Abstract

Coupled resonant tanks are key parts of wireless power transfer (WPT) systems with magnetic resonant coupling. Researchers have proposed different resonant tank design methods to improve power transfer efficiency, increase power density, reduce magnetic flux leakage, or lower VA ratings. Practical WPT systems require a closed-loop control to cope with the variations of operation conditions, but only a few studies have considered the safe operating area (SOA) of systems under closed-loop control in resonant tanks designs. In this work, we analyze closed-loop voltage and current stress characteristics from the aspect of maximum efficiency point tracking control and derive the SOA with a given set of stress limits. Then, we propose a resonant parameter design method of allowing the system to safely operate with any specified range of coupling coefficient and output power. The current stress was minimized in the design to reduce the conductive loss. As for the verification, an experimental prototype was built according to the design method.

Keywords

References

  1. Hsieh, Y., Lin, Z., Chen, M., Hsieh, H., Liu, Y., Chiu, H.: High-efficiency wireless power transfer system for electric vehicle applications. IEEE Trans. Circuits Syst. II Express Briefs 64(8), 942-946 (2017) https://doi.org/10.1109/TCSII.2016.2624272
  2. Wang, Q., Che, W., Mongiardo, M., Monti, G.: Wireless power transfer system with high misalignment tolerance for bio-medical implants. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3023-3027 (2020) https://doi.org/10.1109/TCSII.2020.2985056
  3. Lee, H.H., Kang, S.H., Jung, C.W.: MR-WPT with reconfigurable resonator and ground for laptop application. IEEE Microw. Wirel. Compon. Lett. 28(3), 269-271 (2018) https://doi.org/10.1109/lmwc.2018.2802719
  4. Zhang, Z., Pang, H., Georgiadis, A., Cecati, C.: Wireless power transfer-an overview. IEEE Trans. Ind. Electron. 66(2), 1044-1058 (2019) https://doi.org/10.1109/tie.2018.2835378
  5. Wang, Y., Yao, Y., Liu, X., Xu, D., Cai, L.: An LC/S compensation topology and coil design technique for wireless power transfer. IEEE Trans. Power Electron. 33(3), 2007-2025 (2018) https://doi.org/10.1109/TPEL.2017.2698002
  6. Yang, L., Li, X., Liu, S., Xu, Z., Cai, C.: Analysis and design of an LCCC/S-compensated WPT system with constant output characteristics for battery charging applications. IEEE J. Emerg. Sel. Top. Power Electron. 9(1), 1169-1180 (2021) https://doi.org/10.1109/JESTPE.2020.2971583
  7. Darvish, P., Mekhilef, S., Illias, H.A.B.: A novel S-S-LCLCC compensation for three-coil WPT to improve misalignment and energy efciency stifness of wireless charging system. IEEE Trans. Power Electron. 36(2), 1341-1355 (2021) https://doi.org/10.1109/tpel.2020.3007832
  8. Jiang, Y., Wang, L., Wang, Y., Liu, J., Wu, M., Ning, G.: Analysis, design, and implementation of WPT system for EV's battery charging based on optimal operation frequency range. IEEE Trans. Power Electron. 34(7), 6890-6905 (2021) https://doi.org/10.1109/tpel.2018.2873222
  9. Li, Y., Hu, J., Chen, F., Li, Z., He, Z., Mai, R.: Dual-phase-shift control scheme with current-stress and efficiency optimization for wireless power transfer systems. IEEE Trans. Circuits Syst. I Reg. Pap. 65(9), 3110-3121 (2018) https://doi.org/10.1109/TCSI.2018.2817254
  10. Buja, G., Bertoluzzo, M., Mude, K.N.: Design and experimentation of WPT charger for electric city car. IEEE Trans. Ind. Electron. 62(12), 7436-7447 (2015) https://doi.org/10.1109/TIE.2015.2455524
  11. Liu, M., Fu, M., Ma, C.: Parameter design for a 6.78-MHz wireless power transfer system based on analytical derivation of class E current-driven rectifier. IEEE Trans. Power Electron. 31(6), 4280-4291 (2016) https://doi.org/10.1109/TPEL.2015.2472565
  12. Hariri, A.E., Mohammed, O.A.: An integrated characterization model and multi objective optimization for the design of an EV charger's circular wireless power transfer pads. IEEE Trans. Magn. 53(6), 1-4 (2017) https://doi.org/10.1109/TMAG.2017.2661722
  13. Wei, G., Jin, X., Wang, C., Feng, J., Zhu, C., Matveevich, M.I.: An automatic coil design method with modified AC resistance evaluation for achieving maximum coil-coil efficiency in WPT systems. IEEE Trans. Power Electron. 35(6), 6114-6126 (2020) https://doi.org/10.1109/tpel.2019.2952120
  14. Bosshard, R., Kolar, J.W., Muhlethaler, J., Stevanovic, I., Wunsch, B., Canales, F.: Modeling and η-α-pareto optimization of inductive power transfer coils for electric vehicles. IEEE J. Emerg. Sel. Top. Power Electron. 3(1), 50-64 (2015) https://doi.org/10.1109/JESTPE.2014.2311302
  15. Wang, H., Wang, W., Chen, X., Li, Q., Zhang, Z.: Analysis and design of kHz-metamaterial for wireless power transfer. IEEE Trans. Magn. 56(8), 1-5 (2020)
  16. Mai, R., Liu, Y., Li, Y., Yue, P., Cao, G., He, Z.: An active-rectifier-based maximum efficiency tracking method using an additional measurement coil for wireless power transfer. IEEE Trans. Power Electron. 33(1), 716-728 (2018) https://doi.org/10.1109/TPEL.2017.2665040
  17. Li, H., Li, J., Wang, K., Chen, W., Yang, X.: A maximum efficiency point tracking control scheme for wireless power transfer systems using magnetic resonant coupling. IEEE Trans. Power Electron. 30(7), 3998-4008 (2015) https://doi.org/10.1109/TPEL.2014.2349534
  18. Zhong, W., Hui, S.Y.R.: Maximum energy efficiency operation of series-series resonant wireless power transfer systems using on-of keying modulation. IEEE Trans. Power Electron. 33(4), 3595-3603 (2018) https://doi.org/10.1109/tpel.2017.2709341
  19. Ishihara, H., Moritsuka, F., Kudo, H., Obayashi, S., Itakura, T., Matsushita, A., Mochikawa, H., Otaka, S.: A voltage ratio-based efficiency control method for 3 kW wireless power transmission. In 291th Annual IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1312-1316 (2014)
  20. Li, H., Chen, S., Fang, J., Tang, Y., de Rooij, M.A.: A low-sub-harmonic, full-range, and rapid pulse density modulation strategy for ZVS full-bridge converters. IEEE Trans. Power Electron. 34(9), 8871-8881 (2019) https://doi.org/10.1109/tpel.2018.2889116