DOI QR코드

DOI QR Code

High dv/dt immunity, high insulation voltage, ultra-compact, inductive power supply for gate-drivers of wide-bandgap semiconductor switches

  • Lee, Jaehong (School of Electric and Computer Engineering, University of Seoul) ;
  • Roh, Junghyeon (School of Electric and Computer Engineering, University of Seoul) ;
  • Kim, Sungmin (Department of Electrical and Electronic Engineering, Hanyang University, ERICA Campus) ;
  • Lee, Seung‑Hwan (School of Electric and Computer Engineering, University of Seoul)
  • Received : 2021.12.06
  • Accepted : 2022.04.04
  • Published : 2022.06.20

Abstract

The high dv/dt transient speed of wide-bandgap (WBG) semiconductor switches can generate common-mode current of considerable magnitude, which can distort the gating signals. An isolated power supply is required for gate-driver circuits to prevent the faulty operation of the switches. However, an isolation capacitance of several pF between the gate-driver circuit and the main control circuit induces a common-mode current, which is suficiently large to distort the switching signals. In this study, an isolated power supply with a high dv/dt immunity, ultra-compact size, and high insulation voltage is developed using inductive power transfer (IPT) coils. A parameter design method for a series-parallel compensated IPT system that can achieve a load-independent output voltage is presented. In addition, a novel design for I-core coils is proposed using finite element analysis results. An isolation capacitance of 1.6 pF between the primary and secondary coils was achieved over a 4 mm air gap. The dimensions of the IPT coils were 38 × 22 × 15 mm3. The measured coil-to-coil and DC-to-DC efficiencies at an output power of 12 W were 95% and 87%, respectively.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. 2021R1A2C2009335)

References

  1. Hefner, A.: Performance analysis of 10 kV, 100 A SiC half-bridge power modules. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=32930 (2008)
  2. Ahmed, M.R., Todd, R., Forsyth, A.J.: Predicting SiC MOSFET behavior under hard-switching, soft-switching, and false turn-on conditions. IEEE Trans. Industr. Electron. 64(11), 9001-9011 (2017) https://doi.org/10.1109/TIE.2017.2721882
  3. Duong, T.H., Ortiz-Rodriguez, J.M., Raju, R.N., Hefner, A.R.: Electro-thermal simulation of a 100 A, 10 kV half-bridge SiC MOSFET/JBS power module. In: 2008 IEEE Power Electronics Specialists Conference, pp. 1592-1597 (2008)
  4. Kadavelugu, A., Bhattacharya, S.: Design considerations and development of gate driver for 15 kV SiC IGBT. In: 2014 IEEE Applied Power Electronics Conference and Exposition - APEC 2014, pp. 1494-1501 (2014)
  5. Srdic, S., Teng, F., Lukic, S.: High-isolation low-coupling-capacitance standalone gate drive power supply for SiC-based mediumvoltage power electronic systems. In: 2019 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3287-3291 (2019)
  6. Zeltner, S.: Insulating IGBT driver with PCB integrated capacitive coupling elements. In: 2010 6th International Conference on Integrated Power Electronics Systems, 1-6 (2010)
  7. Tang, S.C., Hui, S.Y., Chung, H.S.-H.: Coreless printed circuit board (PCB) transformers with multiple secondary windings for complementary gate drive circuits. IEEE Trans. Power Electron. 14(3), 431-437 (1999) https://doi.org/10.1109/63.761686
  8. Zhang, W., Huang, X., Lee, F.C., Li, Q.: Gate drive design considerations for high voltage cascode GaN HEMT. In: 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014, pp. 1484-1489 (2014)
  9. Berning, D.W., Duong, T.H., Ortiz-Rodriguez, J.M., Rivera-Lopez, A., Hefner Jr., A. R.: High-voltage isolated gate drive circuit for 10 kV, 100 A SiC MOSFET/JBS power modules. In: 2008 IEEE Industry Applications Society Annual Meeting, pp. 1-7 (2008)
  10. Zhang, X., et al.: A gate drive with power over fiber-based isolated power supply and comprehensive protection functions for 15-kV SiC MOSFET. IEEE J. Emerg. Sel. Top. Power Electron. 4(3), 946-955 (2016) https://doi.org/10.1109/JESTPE.2016.2586107
  11. Anurag, A., Acharya, S., Prabowo, Y., Gohil, G., Bhattacharya, S.: Design considerations and development of an innovative gate driver for medium-voltage power devices with high dv/dt. IEEE Trans. Power Electron. 34(6), 5256-5267 (2019) https://doi.org/10.1109/tpel.2018.2870084
  12. Mainali, K., Madhusoodhanan, S., Tripathi, A., Vechalapu, K., De, A., Bhattacharya, S.: Design and evaluation of isolated gate driver power supply for medium voltage converter applications. In: 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 1632-1639 (2016)
  13. Nguyen, V.-T., Pawaskar, V.U., Gohil, G.: Isolated gate driver for medium-voltage SiC power devices using high-frequency wireless power transfer for a small coupling capacitance. IEEE Trans. Industr. Electron. 68(11), 10992-11001 (2021) https://doi.org/10.1109/TIE.2020.3038095
  14. Kusaka et al., K.: Galvanic isolation system for multiple gate drivers with inductive power transfer-drive of three-phase inverter. In: 2015 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 4525-4532 (2015)
  15. Steiner, R., Steimer, P.K., Krismer, F., Kolar, J.W.: Contactless energy transmission for an isolated 100W gate driver supply of a medium voltage converter. In: 2009 35th Annual Conference of IEEE Industrial Electronics, pp. 302-307 (2009)
  16. Rothmund, D., Bortis, D., Kolar, J.W.: Highly compact isolated gate driver with ultrafast overcurrent protection for 10 kV SiC MOSFETs. CPSS Trans. Power Electron. Appl. 3(4), 278-291 (2018) https://doi.org/10.24295/CPSSTPEA.2018.00028
  17. Xiong, Y., Sun, S., Jia, H., Shea, P., John Shen, Z.: New physical insights on power MOSFET switching losses. IEEE Trans. Power Electron. 24(2), 525-531 (2009) https://doi.org/10.1109/TPEL.2008.2006567
  18. Zuk, P., Havanur, S.: Zero-voltage switching full-bridge converter: operation, FOM, and guidelines for MOSFET selection. Vishay. https://www.vishay.com/docs/90936/an847.pdf. Accessed 1 Sept 2021
  19. Graovac, D., Purschel, M., Kiep, A.: MOSFET power losses calculation using the data-sheet parameters. Infineon. http://www.scribd.com/doc/34308439/MOSFET-Power-Losses-Calculation-Using-the-Data-SheetParameters. Accessed 15 Feb 2021
  20. Gan Systems: GS61004B. https://gansystems.com/ (2016). Accessed 15 Feb 2021
  21. Lu, J., Zhu, G., Lin, D., Wong, S., Jiang, J.: Load-independent voltage and current transfer characteristics of high-order resonant network in IPT system. IEEE J. Emerg. Sel. Top. Power Electron. 7(1), 422-436 (2019) https://doi.org/10.1109/jestpe.2018.2823782
  22. Xie, X., Xie, C., Li, L.: Wireless power transfer to multiple loads over a long distance with load-independent constant-current or constant-voltage output. IEEE Trans. Transport. Electrification 6(3), 935-947 (2020) https://doi.org/10.1109/tte.2020.3008944
  23. Frechter, Y., Kuperman, A.: Output voltage range of a power-loaded series-series compensated inductive wireless power transfer link operating in load-independent regime. IEEE Trans. Power Electron. 35(6), 6586-6593 (2020) https://doi.org/10.1109/tpel.2019.2953200
  24. Costanzo, A., et al.: Conditions for a load-independent operating regime in resonant inductive WPT. IEEE Trans. Microw. Theory Tech. 65(4), 1066-1076 (2017) https://doi.org/10.1109/TMTT.2017.2669987
  25. Sun, L., Tang, H., Zhong, S.: Load-independent output voltage analysis of multiple-receiver wireless power transfer system. IEEE Antennas Wirel. Propag. Lett. 15, 1238-1241 (2016) https://doi.org/10.1109/LAWP.2015.2502942
  26. Qu, X., Chu, H., Wong, S., Tse, C.K.: An IPT battery charger with near unity power factor and load-independent constant output combating design constraints of input voltage and transformer parameters. IEEE Trans. Power Electron. 34(8), 7719-7727 (2019) https://doi.org/10.1109/tpel.2018.2881207
  27. Keeling, N.A., Covic, G.A., Boys, J.T.: A unity-power-factor IPT pickup for high-power applications. IEEE Trans. Ind. Electron. 57(2), 744-751 (2010) https://doi.org/10.1109/TIE.2009.2027255
  28. Wang, C.-S., Covic, G.A., Stielau, O.H.: Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems. IEEE Trans. Ind. Electron. 51(1), 148-157 (2004) https://doi.org/10.1109/TIE.2003.822038
  29. Chwei-Sen Wang, G. A. Covic and O. H. Stielau: General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems. IECON 27th Annual Conference of the IEEE Industrial Electronics Society, 2, 1049-1054 (2001)
  30. ANSYS: HFSS 20. https://www.ansys.com/ (2019). Accessed 20 Jan 2021
  31. ANSYS: MAXWELL 20. https://www.ansys.com/ (2019). Accessed 20 Jan 2021
  32. FERROXCUBE: 3F46. https://www.ferroxcube.com/ (2016). Accessed 10 Sept 2021
  33. FERROXCUBE: E22/6/16/R-3F46. https://www.ferroxcube.com/ (2016). Accessed 10 Sept 2021
  34. Lee, J., Roh, J., Kim, M.Y., Baek, S.-H., Kim, S., Lee, S.-H.: A novel solid-state transformer with loosely coupled resonant dual-active-bridge converters. IEEE Trans. Ind. Appl. 58(1), 709-719. https://doi.org/10.1109/TIA.2021.3119535 (2021)
  35. Roshen, W.: Ferrite core loss for power magnetic components design. IEEE Trans. Magn. 27(6), 4407-4415 (1991) https://doi.org/10.1109/20.278656
  36. Chiang, F.: Effects of high frequency voltage stress on air insulation and solid insulation. In:2010 IEEE Symposium on Product Compliance Engineering Proceedings, 1-10 (2010)
  37. ONSEMI: FSV10150V. https://www.onsemi.com/ (2015). Accessed 5 Dec 2021
  38. RECOM: R-78HB15-0.5. https://recom-power.com/ (2019). Accessed 5 Dec 2021
  39. Wolfspeed: C3M0120090D, https://www.wolfspeed.com/ (2020). Accessed 5 Dec 2021
  40. Advanced Energy: ATA00C18S-L, https://www.advancedenergy.com/ (2020). Accessed 5 Dec 2021