DOI QR코드

DOI QR Code

Coupled inductor based zero-voltage-switching buck/boost converter

  • Wang, Shanshan (College of Electrical Engineering, Zhejiang University) ;
  • Hu, Yihua (Department of Electronics Engineering, University of York) ;
  • Gao, Ming (College of Electrical Engineering, Zhejiang University) ;
  • Shi, Jianjiang (College of Electrical Engineering, Zhejiang University) ;
  • Liu, Tao (Shanghai Institute of Space Power-Sources, China Aerospace Science and Technology Corporation)
  • Received : 2021.10.16
  • Accepted : 2022.03.14
  • Published : 2022.07.20

Abstract

This paper proposes a zero-voltage-switching (ZVS) Buck/Boost converter (BBC). In addition, an auxiliary circuit based on a coupled inductor is introduced to realize ZVS for the main MOSFETs. The magnetic coupling inductor plays the role of filtering and provides ZVS conditions for the main MOSFETs. Since all of the switches can achieve soft switching conditions, and the conduction loss of the auxiliary circuit is small, the conversion efficiency for the overall system is improved. When compared with the traditional ZVS implementation methods based on magnetic coupling inductors used in Buck, Boost, and Buck/Boost converters, the proposed topology can prevent current notches on the current waveform of the input source. Since there are no notches on the input source current, when the proposed ZVS implementation method is applied to an interleaved parallel BBC structure, it has a smaller current ripple of the input source. Finally, experimental results are given and analyzed. Based on these results, both the ZVS conditions and efficiency improvement are verified.

Keywords

Acknowledgement

This research is supported by the National Natural Science Foundation of China (52077199).

References

  1. Han, D., Noppakunkajorn, J., Sarlioglu, B.: Comprehensive efficiency, weight, and volume comparison of SiC and Si-based bidirectional DC-DC converters for hybrid electric vehicles. IEEE Trans. Veh. Technol. 63(7), 3001-3010 (2014) https://doi.org/10.1109/TVT.2014.2323193
  2. Akar, F., Tavlasoglu, Y., Ugur, E., Vural, B., Aksoy, I.: A bidirectional nonisolated multi-input DC-DC converter for hybrid energy storage systems in electric vehicles. IEEE Trans. Veh. Technol. 65(10), 7944-7955 (2016) https://doi.org/10.1109/TVT.2015.2500683
  3. Lai, C., Cheng, Y., Hsieh, M., Lin, Y.: Development of a bidirectional DC/DC converter with dual-battery energy storage for hybrid electric vehicle system. IEEE Trans. Veh. Technol. 67(2), 1036-1052 (2018) https://doi.org/10.1109/tvt.2017.2763157
  4. Abusara, M.A., Guerrero, J.M., Sharkh, S.M.: Line-interactive UPS for microgrids. IEEE Trans. Ind. Electron. 61(3), 1292-1300 (2014) https://doi.org/10.1109/TIE.2013.2262763
  5. Xiong, X., Tse, C.K., Ruan, X.: Bifurcation analysis of standalone photovoltaic-battery hybrid power system. IEEE Trans. Circuits Syst. I, Reg. Papers. 60(5), 1354-1365 (2013) https://doi.org/10.1109/TCSI.2013.2239140
  6. Chao, K., Huang, C.: Bidirectional DC-DC soft-switching converter for stand-alone photovoltaic power generation systems. IET Power Electron. 7(6), 1557-1565 (2014) https://doi.org/10.1049/iet-pel.2013.0335
  7. Mirzaei, A., Forooghi, M., Ghadimi, A.A., Abolmasoumi, A.H., Riahi, M.R.: Design and construction of a charge controller for stand-alone PV/battery hybrid system by using a new control strategy and power management. Sol. Energy 149, 132-144 (2017) https://doi.org/10.1016/j.solener.2017.03.046
  8. Garcia, P., Fernandez, L.M., Garcia, C.A., Jurado, F.: Energy management system of fuel-cell-battery hybrid tramway. IEEE Trans. Ind. Electron. 57(12), 4013-4023 (2010) https://doi.org/10.1109/TIE.2009.2034173
  9. Jin, K., Yang, M., Ruan, X., Xu, M.: Three-level bidirectional converter for fuel-cell/battery hybrid power system. IEEE Trans. Ind. Electron. 57(6), 1976-1986 (2010) https://doi.org/10.1109/TIE.2009.2031197
  10. Wang, Y., Xue, L., Wang, C., Wang, P., Li, W.: Interleaved high-conversion-ratio bidirectional DC-DC converter for distributed energy-storage systems-circuit generation, analysis, and design. IEEE Trans. Power Electron. 31(8), 5547-5561 (2016) https://doi.org/10.1109/TPEL.2015.2496274
  11. Wu, H., Sun, K., Chen, L., Zhu, L., Xing, Y.: High step-up/step-down soft-switching bidirectional DC-DC converter with coupled-inductor and voltage matching control for energy storage systems. IEEE Trans. Ind. Electron. 63(5), 2892-2903 (2016) https://doi.org/10.1109/TIE.2016.2517063
  12. Huang, X., Lee, F.C., Li, Q., Du, W.: High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor. IEEE Trans. Power Electron. 31(6), 4343-4352 (2016) https://doi.org/10.1109/TPEL.2015.2476482
  13. Yao, Z., Lu, S.: A simple approach to enhance the effectiveness of passive currents balancing in an interleaved multiphase bidirectional DC-DC converter. IEEE Trans. Power Electron. 34(8), 7242-7255 (2019) https://doi.org/10.1109/tpel.2018.2881058
  14. Vazquez, A., Arias, M., Rodriguez, A., Lamar, D.G., Luri, S.: Master-slave technique with direct variable frequency control for interleaved bidirectional boost converter. In: Proceedings of IEEE Energy Conversion Congress and Exposition, pp. 956-963 (2014)
  15. Baek, J., Choi, W., Cho, B.: Digital adaptive frequency modulation for bidirectional DC-DC converter. IEEE Trans. Ind. Electron. 60(11), 5167-5176 (2013) https://doi.org/10.1109/TIE.2012.2224075
  16. Ahmed, H.F., Cha, H., Kim, S., Kim, D., Kim, H.: Wide load range efficiency improvement of a high-power-density bidirectional DC-DC converter using an MR fluid-gap inductor. IEEE Trans. Ind. Appl. 51(4), 3216-3226 (2015) https://doi.org/10.1109/TIA.2014.2387485
  17. Pajnic, M., Pejovic, P.: Zero-voltage switching control of an interleaved bi-directional buck-boost converter with variable coupled inductor. IEEE Trans. Power Electron. 34(10), 9562-9572 (2019) https://doi.org/10.1109/tpel.2019.2893703
  18. Zhang, Y., Sen, P.C.: A new soft-switching technique for buck, boost, and buck-boost converters. IEEE Trans. Ind. Appl. 39(6), 1775-1782 (2003) https://doi.org/10.1109/TIA.2003.818964
  19. Lee, J., et al.: Auxiliary switch control of a bidirectional soft-switching dc/dc converter. IEEE Trans. Power Electron. 28(12), 5446-5457 (2013) https://doi.org/10.1109/TPEL.2013.2254131
  20. Do, H.: Zero-voltage-switching synchronous buck converter with a coupled inductor. IEEE Trans. Ind. Electron. 58(8), 3440-3447 (2011) https://doi.org/10.1109/TIE.2010.2084973
  21. Zhang, X., Jiang, L., Deng, J., Li, S., Chen, Z.: Analysis and design of a new soft-switching boost converter with a coupled inductor. IEEE Trans. Power Electron. 29(8), 4270-4277 (2014) https://doi.org/10.1109/TPEL.2013.2285708
  22. Mohammadi, M.R., Farzanehfard, H.: New family of zero-voltage-transition PWM bidirectional converters with coupled inductors. IEEE Trans. Ind. Electron. 59(2), 912-919 (2012) https://doi.org/10.1109/TIE.2011.2148681
  23. Mohammadi, M.R., Farzanehfard, H.: A new family of zero-voltage-transition nonisolated bidirectional converters with simple auxiliary circuit. IEEE Trans. Ind. Electron. 63(3), 1519-1527 (2016) https://doi.org/10.1109/TIE.2015.2498907
  24. Chen, G., Deng, Y., Tao, Y., He, X., Wang, Y., Hu, Y.: Topology derivation and generalized analysis of zero-voltage-switching synchronous DC-DC converters with coupled inductors. IEEE Trans. Ind. Electron. 63(8), 4805-4815 (2016) https://doi.org/10.1109/TIE.2016.2549506
  25. Nan, C., Ayyanar, R.: A 1 MHz bi-directional soft-switching DC-DC converter with planar coupled inductor for dual voltage automotive systems. In: Proceedings of IEEE Applied Power Electronics Conference and Exposition, pp. 432-439 (2016)
  26. Chen, G., et al.: A family of zero-voltage-switching magnetic coupling nonisolated bidirectional DC-DC converters. IEEE Trans. Ind. Electron. 64(8), 6223-6233 (2017) https://doi.org/10.1109/TIE.2017.2682007
  27. Mohammadi, M.R., Farzanehfard, H.: Family of soft-switching bidirectional converters with extended ZVS range. IEEE Trans. Ind. Electron. 64(9), 7000-7008 (2017) https://doi.org/10.1109/TIE.2017.2686308
  28. Mohammadi, M.R., Farzanehfard, H.: Analysis of diode reverse recovery efect on the improvement of soft-switching range in zero-voltage-transition bidirectional converters. IEEE Trans. Ind. Electron. 62(3), 1471-1479 (2015) https://doi.org/10.1109/TIE.2014.2363425
  29. Cheng, X., Zhang, Y., Yin, C.: A family of coupled-inductor-based soft-switching DC-DC converter with double synchronous rectification. IEEE Trans. Ind. Electron. 66(9), 6936-6946 (2019) https://doi.org/10.1109/tie.2018.2877156
  30. Mohammadi, M.R., Peyman, H., Yazdani, M.R., Mirtalaei, S.M.M.: A ZVT bidirectional converter with coupled-filter-inductor and elimination of input current notches. IEEE Trans. Ind. Electron. 67(9), 7461-7469 (2020) https://doi.org/10.1109/tie.2019.2944065