DOI QR코드

DOI QR Code

High-gain sparse three-level indirect matrix converter and its modulation strategy

  • Wang, Rutian (Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Northeast Electric Power University) ;
  • Hao, Henan (Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Northeast Electric Power University) ;
  • Yuan, Shuai (Key Laboratory of Modern Power System Simulation and Control and Renewable Energy Technology, Northeast Electric Power University) ;
  • Hui, Xinxin (State Grid Weifang Electric Power Supply Company)
  • Received : 2021.08.14
  • Accepted : 2022.01.20
  • Published : 2022.04.20

Abstract

This paper proposes a dual-Trans-quasi Z-source three-level indirect matrix converter (DTrans-qZs TLIMC). A dual-Trans-qZs network is located in the DC-link of a TLIMC to provide a stable virtual neutral point for the inverter stage and to increase the voltage gain of the converter. The space vector pulse width modulation (SVPWM) strategy is proposed to control the DTrans-qZs TLIMC. By analyzing the small signal model of the DTrans-qZs network, the analysis result of the impact of the rectifier stage output voltage pulsation on the operating characteristics of the DTrans-qZs network can be obtained, and the modulation ratio of the inverter stage can be corrected in real time. By analyzing the voltage transfer ratio of the DTrans-qZs TLIMC, the calculation expression of the maximum voltage transfer ratio can be obtained. Finally, experiments are performed to verify the correctness of the topology and its modulation strategy.

Keywords

References

  1. Aros, J.R., Guinez, R.P., Dobson, R.C., Gimenez, R.B., Clare, J.: Indirect matrix converter modulation strategies for open-end winding induction machine. IEEE Latin Am. Trans. 12(3), 395-401 (2014) https://doi.org/10.1109/TLA.2014.6827864
  2. Ma, Y., Ma, X., Li, P., Ren, X.: A modulation strategy for improving output performance of matrix converter. CPSS Trans. Power Electron. Appl. 4(3), 255-262 (2019) https://doi.org/10.24295/cpsstpea.2019.00024
  3. Riedemann, J., Clare, J.C., Wheeler, P.W., Blasco-Gimenez, R., Rivera, M., Pena, R.: Open-end winding induction machine fed by a dual-output indirect matrix converter. IEEE Trans. Ind. Electron. 63(7), 4118-4128 (2016) https://doi.org/10.1109/TIE.2016.2531020
  4. Wheeler, P.W., Rodriguez, J., Clare, J.C., Empringham, L., Weinstein, A.: Matrix converters: a technology review. IEEE Trans. Ind. Electron. 49(2), 276-288 (2002) https://doi.org/10.1109/41.993260
  5. Kolar, J.W., Schafmeister, F., Round, S.D., Ertl, H.: Novel three-phase AC-AC sparse matrix converters. IEEE Trans. Power Electron. 22(5), 1649-1661 (2007) https://doi.org/10.1109/TPEL.2007.904178
  6. Li, X., Su, M., Sun, Y., Dan, H., Xiong, W.: Modulation strategies based on mathematical construction method for matrix converter under unbalanced input voltages. IET Power Electron. 6(3), 434-445 (2013) https://doi.org/10.1049/iet-pel.2012.0361
  7. Malekjamshidi, Z., et al.: Bidirectional power flow control with stability analysis of the matrix converter for microgrid applications. Int. J. Electr. Power Energy Syst. 110, 725-736 (2019) https://doi.org/10.1016/j.ijepes.2019.03.053
  8. Sun, Y., Xiong, W., Su, M., Li, X., Dan, H., Yang, J.: Topology and modulation for a new multilevel diode-clamped matrix converter. IEEE Trans. Power Electron. 29(12), 6352-6360 (2014) https://doi.org/10.1109/TPEL.2014.2305711
  9. Loh, P.C., Rong, R.J., Blaabjerg, F., Shan, L., Wang, P.: Carrier-based modulation schemes for various three-level matrix converters. In: IEEE power electronics specialists conference, Rhodes, pp. 1720-1726 (2008)
  10. Raju, S., Mohan, N.: Indirect three level matrix converter. In: 7th IET international conference on power electronics, machines and drives (PEMD 2014), pp. 1-6 (2014)
  11. Lee, M.Y., Wheeler, P., Klumpner, C.: Space-vector modulated multilevel matrix converter. IEEE Trans. Ind. Electron. 57(10), 3385-3394 (2010) https://doi.org/10.1109/TIE.2009.2038940
  12. Peng, F.Z.: Z-source inverter. IEEE Trans. Ind. Appl. 39(2), 504-510 (2003) https://doi.org/10.1109/TIA.2003.808920
  13. Liu, X., Loh, P.C., Wang, P., Han, X.: Improved modulation schemes for indirect Z-source Matrix converter with sinusoidal input and output waveforms. IEEE Trans. Power Electron. 27(9), 4039-4050 (2012) https://doi.org/10.1109/TPEL.2012.2188415
  14. Zhang, J., Wai, R.: Design of new SVPWM mechanism for three-level NPC ZSI via line-voltage coordinate system. IEEE Trans. Power Electron. 35(8), 8593-8606 (2020) https://doi.org/10.1109/tpel.2019.2961127
  15. Jin, E., Tan, Q., Li, S.: Coordinated control strategy of MMC circulating current and capacitor voltage under unbalanced grid conditions. J. Northeast Electric Power Univ. 41(1), 90-98 (2021)
  16. Li, W., Liu, X., Liu, H.: Research on improving frequency transient stability of island microgrid by energy storage based on improved droop control. J. Northeast Electric Power Univ. 41(1), 107-114 (2021)
  17. Qian, W., Peng, F.Z., Cha, H.: Trans-Z-source inverters. IEEE Trans. Power Electron. 26(12), 3453-3463 (2011) https://doi.org/10.1109/TPEL.2011.2122309
  18. Li, D., Loh, P.C., Zhu, M., Gao, F., Blaabjerg, F.: Cascaded multi-cell trans-Z-source inverters. IEEE Trans. Power Electron. 28(2), 826-836 (2013) https://doi.org/10.1109/TPEL.2012.2205709
  19. Kong, X., Wong, C., Lam, C.: Effects of parasitic resistances on magnetically coupled impedance-source networks. IEEE Trans. Power Electron. 35(9), 9171-9183 (2020) https://doi.org/10.1109/tpel.2020.2970831
  20. Kojabadi, H.M., Kivi, H.F., Blaabjerg, F.: Experimental and theoretical analysis of trans-Z-source inverters with leakage inductance effects. IEEE Trans. Ind. Electron. 65(2), 977-987 (2018) https://doi.org/10.1109/tie.2017.2726966
  21. Nguyen, M., Lim, Y., Park, S.: Improved trans-Z-source inverter with continuous input current and boost inversion capability. IEEE Trans. Power Electron. 28(10), 4500-4510 (2013) https://doi.org/10.1109/TPEL.2012.2233758
  22. Wang, R., Han, X., Liu, C., Zhao, Y., Zhang, J.: Carrier-based PWM control strategy for Z-source two-stage matrix converter. IET Power Electron. 12(13), 3527-3538 (2019) https://doi.org/10.1049/iet-pel.2019.0029
  23. Lei, Q., Ge, B., Peng, F.Z.: Hybrid PWM control for Z-source matrix converter. In: Proceedings on IEEE energy conversion congress and exposition, pp. 246-253 (2011)
  24. Wang, R., et al.: Optimization of control strategy of cascaded modular multilevel matrix converter. J. Northeast Elect. Power Univ. 38(1), 59-66 (2019)