Acknowledgement
The authors would like to thank Goran Ronsten, program coordinator for Winterwind Conferences, for his continuous support and for providing data for carrying out this research.
References
- Antikainen, P. (2018), "Retrofitting Anti-icing Blade Heating on Installed Wind Turbines", in International Wind Energy Conference (Winterwind 2018), Feb 5-7, Are, Sweden.
- Antikainen, P. (2020), "Megaterends in Blade Heating", In International Wind Energy Conference (Winterwind 2020), Feb 3-5, Are, Sweden.
- Chattopadhay, A., Sarkar, A., Howlader, P. and Balasubramanian, V.N. (2018), "Grad-CAM++: Generalized gradient-based visual explanations for deep convolutional networks", Proceedings - 2018 IEEE Winter Conference on Applications of Computer Vision, WACV 2018, 2018-Janua, 839-847. https://doi.org/10.1109/WACV.2018.00097.
- Chen, L., Xu, G., Zhang, Q. and Zhang, X. (2019), "Learning deep representation of imbalanced SCADA data for fault detection of wind turbines", Measure. J. Int. Measure. Confederation, 139, 370-379. https://doi.org/10.1016/j.measurement.2019.03.029.
- Dong, X., Gao, D., Li, J., Jincao, Z. and Zheng, K. (2020), "Blades icing identification model of wind turbines based on SCADA data", Renew. Energy, 162, 575-586. https://doi.org/10.1016/j.renene.2020.07.049.
- Freytag, R. (2020), "Early Information of Potential Icing and Measuring of Icing Events", Int. Wind Energy Conference (Winterwind 2020), Feb 3-5, Are, Sweden.
- Froidevaux, P. (2019), "Benchmark of four Blade-based Ice Detection Systems", In International Wind Energy Conference (Winterwind 2019), Feb 4-6, Umea, Sweden.
- Gao, L. and Hong, J. (2021), "Wind turbine performance in natural icing environments: A field characterization", Cold Regions Sci. Technol., 181, 103193. https://doi.org/10.1016/j.coldregions.2020.103193.
- Godreau, C. (2019), "Wind turbine rotor icing detectors performance evaluation", In International Wind Energy Conference (Winterwind 2019), Feb 4-6, Umea, Sweden.
- Haciefendioglu, K., Basaga, H.B. and Demir, G. (2021), "Automatic detection of earthquake-induced ground failure effects through Faster R-CNN deep learning-based object detection using satellite images". Nat. Haz., 105, 383-403. https://doi.org/10.1007/s11069-020-04315-y.
- Han, H., Wang, W.Y. and Mao, B.H. (2005), "Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning", Lecture Notes in Computer Science, 878-887. https://doi.org/10.1007/11538059_91.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-Decem, 770-778. https://doi.org/10.1109/CVPR.2016.90.
- Hughes, M.J. and Kennedy, R. (2019), "High-quality cloud masking of landsat 8 imagery using convolutional neural networks", Remote Sensing, 11. https://doi.org/10.3390/rs11212591.
- Jiang, W. and Jin, J. (2021), Intelligent Icing Detection Model of Wind Turbine Blades Based on SCADA data, 1-10.
- Kaikkonen, V. (2020), "Ice and snow management innovations for critical infrastructure", In International Wind Energy Conference (Winterwind 2020), Feb 3-5, Are, Sweden.
- Karpathy, A. (2016), "Convolutional Neural Networks (CNNs/ConvNets). Retrieved CS231n Convolutional Neural Networks for Visual Recognition," http://cs231n.github.io/, Available athttps://cs231n.github.io/.
- Kreutz, M., Ait-Alla, A., Varasteh, K., Oelker, S., Greulich, A., Freitag, M. and Thoben, K.D. (2019), "Machine learning-based icing prediction on wind turbines", Procedia CIRP, 423-428. https://doi.org/10.1016/j.procir.2019.03.073.
- Kreutz, M., Alla, A.A., Eisenstadt, A., Freitag, M. and Thoben, K. D. (2020a), "Ice detection on rotor blades of wind turbines using RGB images and convolutional neural networks", Procedia CIRP, 93, 1292-1297. https://doi.org/10.1016/j.procir.2020.04.107.
- Kreutz, M., Alla, A.A., Varasteh, K., Lutjen, M., Freitag, M. and Thoben, K.D. (2020b), "Investigation of icing causes on wind turbine rotor blades using machine learning models, minimalistic input data and a full-factorial design", Procedia Manufacturing, 52, 168-173. https://doi.org/10.1016/j.promfg.2020.11.030.
- Krizhevsky, B.A., Sutskever, I. and Hinton, G.E. (2017), "ImageNet classification with deep convolutional neural networks", Communications of the ACM, 60, 84-90. https://doi.org/10.1145/3065386
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 51, 436-444. https://doi.org/10.1038/nature14539
- Madi, E., Pope, K., Huang, W. and Iqbal, T. (2019), "A review of integrating ice detection and mitigation for wind turbine blades", Renew. Sustaiin. Energy Reviews, 103, 269-281. https://doi.org/10.1016/j.rser.2018.12.019.
- Parent, O. and Ilinca, A. (2011), "Anti-icing and de-icing techniques for wind turbines: Critical review", Cold Regions Sci. Technol., 65, 88-96. https://doi.org/10.1016/j.coldregions.2010.01.005.
- Piqsels (2021), Wind Turbine, Wind Energy, Turn, Power Generation, Wind Generator, Renewable, Propeller, Wind Power, Piqsels, Available athttps://www.piqsels.com/en/publicdomain-photo-flvmk.
- Poppy (2006), "Wind turbine Reading's landmark wind turbine was completed Flickr", https://www.flickr.com/photos/hddod/141018304/.
- Rizk, P., Al Saleh, N., Younes, R., Ilinca, A. and Khoder, J. (2020), "Hyperspectral imaging applied for the detection of wind turbine blade damage and icing", Remote Sensing Applications: Soc. Environ., 18, 100291. https://doi.org/10.1016/j.rsase.2020.100291.
- Salman, H., Grover, J. and Shankar, T. (2018), "Hierarchical reinforcement learning for sequencing behaviors", 2733, 2709-2733. https://doi.org/10.1162/NECO.
- Sarlak, H. (2018), "Numerical simulation of icethrow from wind turbines in cold climate", In International Wind Energy Conference (Winterwind 2018), Feb 5-7, Are, Sweden.
- Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D. and Batra, D. (2020), "Grad-CAM: Visual explanations from deep networks via gradient-based localization", Int. J. Comput. Vision, 128, 336-359. https://doi.org/10.1007/s11263-019-01228-7.
- Shu, L., Li, H., Hu, Q., Jiang, X., Qiu, G., McClure, G. and Yang, H. (2018), "Study of ice accretion feature and power characteristics of wind turbines at natural icing environment", Cold Regions Sci. Technol., 147, 45-54. https://doi.org/10.1016/j.coldregions.2018.01.006.
- Simonyan, K. and Zisserman, A. (2015), "Very deep convolutional networks for large-scale image recognition", In 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 1-14.
- Son, C. and Kim, T. (2020), "Development of an icing simulation code for rotating wind turbines", J. Wind Eng. Ind. Aerod., 203, 104239. https://doi.org/10.1016/j.jweia.2020.104239.
- Stoyanov, D.B. and Nixon, J.D. (2020), "Alternative operational strategies for wind turbines in cold climates", Renew. Energy, 145, 2694-2706. https://doi.org/10.1016/j.renene.2019.08.023.
- Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2016), "Rethinking the Inception Architecture for Computer Vision", In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 2818-2826. https://doi.org/10.1109/CVPR.2016.308.
- Ullo, S.L., Mohan, A., Sebastianelli, A., Ahamed, S.E., Kumar, B., Dwivedi, R. and Sinha, G.R. (2020), "A new mask R-CNN based method for improved landslide detection", Comput Vision and Pattern Recognition.
- Ummers, M. (2019), "Is wind industry ready for disruptive slutions?", In International Wind Energy Conference (Winterwind 2019), Feb 4-6, Umea, Sweden.
- Wadham-Gagnon, M. (2018), "Ice Protection System Performance Assessment Methodology," In International Wind Energy Conference (Winterwind 2018), Feb 5-7, Are, Sweden.
- Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S., Mardziel, P. and Hu, X. (2020), "Score-CAM: Score-weighted visual explanations for convolutional neural networks", IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, 2020-June, 111-119. https://doi.org/10.1109/CVPRW50498.2020.00020.
- Xu, J., Tan, W. and Li, T. (2020), "Predicting fan blade icing by using particle swarm optimization and support vector machine algorithm", Comput. Electric. Eng., 87, 106751. https://doi.org/10.1016/j.compeleceng.2020.106751.
- Xu, Y., Scott, K. A., Ri, H., Hvljq, V., Ri, Q., Ri, F., Sdwfkhv, L., Qwkhwlf, I.V, Udgdu, D., Zlwk, P., Ihdwxuhv, H.W., Wkh, R.I., Iurp, S., Qdwxudo, I., Wudfwlrq, U.H. and Vkls, D.Q.G. (2017), "Sea ice and open water classification of sar imagery using cnn-based transfer learning," in IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), 5-8.
- Yan, Q. and Huang, W. (2018), "Sea ice sensing from GNSS-R data using convolutional neural networks", IEEE Geosci. Remote Sensing Lett., 15, 1510-1514. https://doi.org/10.1109/LGRS.2018.2852143.
- Yu, H., Ma, Y., Wang, L., Zhai, Y. and Wang, X. (2017), "A landslide intelligent detection method based on CNN and RSG-R", In 2017 IEEE International Conference on Mechatronics and Automation, ICMA 2017, Institute of Electrical and Electronics Engineers Inc., 40-44. https://doi.org/10.1109/ICMA.2017.8015785.