DOI QR코드

DOI QR Code

Multipoint variable generalized displacement methods: Novel nonlinear solution schemes in structural mechanics

  • Maghami, Ali (Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad) ;
  • Shahabian, Farzad (Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad) ;
  • Hosseini, Seyed Mahmoud (Industrial Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad)
  • 투고 : 2021.09.23
  • 심사 : 2022.04.28
  • 발행 : 2022.07.25

초록

The generalized displacement method is a nonlinear solution scheme that follows the equilibrium path of the structure based on the development of the generalized displacement. This method traces the path uniformly with a constant amount of generalized displacement. In this article, we first develop higher-order generalized displacement methods based on multi-point techniques. According to the concept of generalized stiffness, a relation is proposed to adjust the generalized displacement during the path-following. This formulation provides the possibility to change the amount of generalized displacement along the path due to changes in generalized stiffness. We, then, introduce higher-order algorithms of variable generalized displacement method using multi-point methods. Finally, we demonstrate with numerical examples that the presented algorithms, including multi-point generalized displacement methods and multi-point variable generalized displacement methods, are capable of following the equilibrium path. A comparison with the arc length method, generalized displacement method, and multi-point arc-length methods illustrates that the adjustment of generalized displacement significantly reduces the number of steps during the path-following. We also demonstrate that the application of multi-point methods reduces the number of iterations.

키워드

과제정보

This work was accomplished during a postdoctoral research program of the first author (Ali Maghami) at the department of Industrial Engineering of the Ferdowsi University of Mashhad. Ali Maghami was supported by a grant from Ferdowsi University of Mashhad, Iran (No. FUM 67230).

참고문헌

  1. Abbasi, M., Namadchi, A. and Alamatian, J. (2021), "Lagrangian interpolation for kinetic dynamic relaxation method with the variable load factor", J. Brazil. Soc. Mech. Sci. Eng., 43(2), 1-11. https://doi.org/10.1007/s40430-021-02819-7.
  2. Akbas, S.D. (2018), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027.
  3. Ansari, R., Hasrati, E., Shakouri, A., Bazdid-Vahdati, M. and Rouhi, H. (2018), "Nonlinear large deformation analysis of shells using the variational differential quadrature method based on the six-parameter shell theory", Int. J. Nonlin. Mech., 106, 130-143. https://doi.org/10.1016/j.ijnonlinmec.2018.08.007.
  4. Batoz, J.L. and Dhatt, G. (1979), "Incremental displacement algorithms for nonlinear problems", Int. J. Numer. Meth. Eng., 14(8), 1262-1267. https://doi.org/10.1002/nme.1620140811.
  5. Batoz, J.L., Bathe, K.J. and Ho, L.W. (1980), "A study of threenode triangular plate bending elements", Int. J. Numer. Meth. Eng., 15(12), 1771-1812. https://doi.org/10.1002/nme.1620151205.
  6. Bergan, P.G. (1980), "Solution algorithms for nonlinear structural problems", Comput. Struct., 12(4), 497-509. https://doi.org/10.1016/0045-7949(80)90125-X.
  7. Bergan, P.G. and Soreide, T. (1973), "A comparative study of different numerical solution techniques as applied to a nonlinear structural problem", Comput. Meth. Appl. Mech. Eng., 2(2), 185-201. https://doi.org/10.1016/0045-7825(73)90014-5.
  8. Bergan, P.G., Horrigmoe, G., Brakeland, B. and Soreide, T.H. (1978), "Solution techniques for non-linear finite element problems", Int. J. Numer. Meth. Eng., 12(11), 1677-1696. https://doi.org/10.1002/nme.1620121106.
  9. Boshrouei Shargh, G. and Barati, R. (2021), "Estimation of inelastic seismic input energy", Soil Dyn. Earthq. Eng., 142, 106505. https://doi.org/10.1016/j.soildyn.2020.106505.
  10. Carrera, E. (1994), "A study on arc-length-type methods and their operation failures illustrated by a simple model", Comput. Struct., 50(2), 217-229. https://doi.org/10.1016/0045-7949(94)90297-6.
  11. Chan, S.L. (1988), "Geometric and material non-linear analysis of beam-columns and frames using the minimum residual displacement method", Int. J. Numer. Meth. Eng., 26(12), 2657-2669. https://doi.org/10.1002/nme.1620261206.
  12. Crisfield, M.A. (1983), "An arc-length method including line searches and accelerations", Int. J. Numer. Meth. Eng., 19(9), 1269-1289. https://doi.org/10.1002/nme.1620190902.
  13. Darvishi, M. and Barati, A. (2007), "A fourth-order method from quadrature formulae to solve systems of nonlinear equations", Appl. Math. Comput., 188(1), 257-261. https://doi.org/10.1016/j.amc.2006.09.115.
  14. Derakhshandeh, S.Y. and Pourbagher, R. (2016), "Application of high-order Newton-like methods to solve power flow equations", IET Gener., Transm. Distrib., 10(8), 1853-1859. https://doi.org/10.1049/iet-gtd.2015.0998.
  15. Elnashai, A.S. (2001), "Advanced inelastic static (pushover) analysis for earthquake applications", Struct. Eng. Mech., 12(1), 51-70. https://doi.org/10.12989/sem.2001.12.1.051.
  16. Eriksson, A. (1998), "Structural instability analyses based on generalised path-following", Comput. Meth. Appl. Mech. Eng., 156(1-4), 45-74. https://doi.org/10.1016/S0045-7825(97)00200-4.
  17. Gillman, A.S., Fuchi, K. and Buskohl, P.R. (2019), "Discovering sequenced origami folding through nonlinear mechanics and topology optimization", J. Mech. Des., 141(4), 041401. https://doi.org/10.1115/1.4041782.
  18. Habibi, A. and Bidmeshki, S. (2018), "A dual approach to perform geometrically nonlinear analysis of plane truss structures", Steel Compos. Struct., 27(1), 13-25. https://doi.org/10.12989/scs.2018.27.1.013.
  19. Homeier, H. (2004), "A modified Newton method with cubic convergence: the multivariate case", J. Comput. Appl. Math., 169(1), 161-169. https://doi.org/10.1016/j.cam.2003.12.041.
  20. Jarratt, P. (1966), "Some fourth order multipoint iterative methods for solving equations", Math. Comput., 20(95), 434-437. https://doi.org/10.2307/2003602.
  21. Kadapa, C. (2021), "A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics", Eng. Struct., 234, 111755. https://doi.org/10.1016/j.engstruct.2020.111755.
  22. Kiran, R. and Khandelwal, K. (2018), "On the application of multipoint Root-Solvers for improving global convergence of fracture problems", Eng. Fract. Mech., 193, 77-95. https://doi.org/10.1016/j.engfracmech.2018.02.031.
  23. Kiran, R., Li, L. and Khandelwal, K. (2015), "Performance of cubic convergent methods for implementing nonlinear constitutive models", Comput. Struct., 156, 83-100. https://doi.org/10.1016/j.compstruc.2015.04.011.
  24. Leon, S.E., Lages, E.N., de Araujo, C.N. and Paulino, G.H. (2014), "On the effect of constraint parameters on the generalized displacement control method", Mech. Res. Commun., 56, 123-129. https://doi.org/10.1016/j.mechrescom.2013.12.009.
  25. Leon, S.E., Paulino, G.H., Pereira, A., Menezes, I.F.M. and Lages, E.N. (2011), "A unified library of nonlinear solution schemes", Appl. Mech. Rev., 64(4), 040803. https://doi.org/10.1115/1.4006992.
  26. Levy, R. and Spillers, W.R. (2013), Analysis of Geometrically Nonlinear Structures, Springer Science & Business Media.
  27. Liu, K. and Paulino, G.H. (2017), "Nonlinear mechanics of nonrigid origami: An efficient computational approach", Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 473(2206), 20170348. https://doi.org/10.1098/rspa.2017.0348.
  28. Maghami, A. and Hosseini, S.M. (2021), "Intelligent step-length adjustment for adaptive pathfollowing in nonlinear structural mechanics based on group method of data handling neural network", Mech. Adv. Mater. Struct., 1-28. https://doi.org/10.1080/15376494.2021.1880677.
  29. Maghami, A. and Schillinger, D. (2020), "A stiffness parameter and truncation error criterion for adaptive path following in structural mechanics", Int. J. Numer. Meth. Eng., 121(5), 967-989. https://doi.org/10.1002/nme.6253.
  30. Maghami, A., Hosseini, S.M. and Shahabian, F. (2019), "Geometrically nonlinear analysis of structures using various higher order solution methods: A comparative analysis for large deformation", Comput. Model. Eng. Sci., 121(3), 877-907. https://doi.org/10.32604/cmes.2019.08019
  31. Maghami, A., Shahabian, F. and Hosseini, S.M. (2018), "Path following techniques for geometrically nonlinear structures based on Multi-point methods", Comput. Struct., 208, 130-142. https://doi.org/10.1016/j.compstruc.2018.07.005.
  32. Masoodi, A.R. and Arabi, E. (2018), "Geometrically nonlinear thermomechanical analysis of shell-like structures", J. Therm. Stress., 41(1), 37-53. https://doi.org/10.1080/01495739.2017.1360166.
  33. Nguyen, T.N., Lee, S., Nguyen-Xuan, H. and Lee, J. (2019), "A novel analysis-prediction approach for geometrically nonlinear problems using group method of data handling", Comput. Meth. Appl. Mech. Eng., 354, 506-526. https://doi.org/10.1016/j.cma.2019.05.052.
  34. Nguyen, T.N., Nguyen-Xuan, H. and Lee, J. (2020), "A novel data-driven nonlinear solver for solid mechanics using time series forecasting", Finite Elem. Anal. Des., 171, 103377. https://doi.org/10.1016/j.finel.2019.103377.
  35. Norouzzadeh, A. and Ansari, R. (2020), "On the isogeometric analysis of geometrically nonlinear shell structures with the consideration of surface energies", Eur. Phys. J. Plus, 135(2), 1-30. https://doi.org/10.1140/epjp/s13360-020-00257-3.
  36. Pagani, A. and Carrera, E. (2017), "Large-deflection and postbuckling analyses of laminated composite beams by Carrera Unified Formulation", Compos. Struct., 170, 40-52. https://doi.org/10.1016/j.compstruct.2017.03.008.
  37. Petkovic, M.S., Neta, B., Petkovic, L.D. and Dzunic, J. (2014), "Multipoint methods for solvingnonlinear equations: A survey", Appl. Math. Comput., 226, 635-660. https://doi.org/10.1016/j.amc.2013.10.072.
  38. Ramm, E. (1981), "Strategies for tracing the nonlinear response near limit points", Nonlinear Finite Element Analysis in Structural Mechanics, Springer, Berlin, Heidelberg.
  39. Rezaiee-Pajand, M., Ghalishooyan, M. and Salehi-Ahmadabad, M. (2013a), "Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods", Struct. Eng. Mech., 48(6), 849-878. https://doi.org/10.12989/sem.2013.48.6.849.
  40. Rezaiee-Pajand, M., Ghalishooyan, M. and Salehi-Ahmadabad, M. (2013b), "Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods", Struct. Eng. Mech., 48(6), 879-914. https://doi.org/10.12989/sem.2013.48.6.879.
  41. Riks, E. (1972), "The application of Newton's method to the problem of elastic stability", J. Appl. Mech., 39(4), 1060-1065. https://doi.org/10.1115/1.3422829.
  42. Shuang, F., Xiao, P., Bai, Y. and Ke, F. (2020), "Accelerated molecular statics based on atomic inertia effect", Commun. Comput. Phys., 28(3), 1019-1037. https://doi.org/10.4208/cicp.OA-2019-0157.
  43. Wang, T. (2020), "Two new triangular thin plate/shell elements based on the absolute nodal coordinate formulation", Nonlin. Dyn., 99, 2707-2725. https://doi.org/10.1007/s11071-019-05448-x.
  44. Weerakoon, S. and Fernando, T. (2000), "A variant of Newton's method with accelerated third-order convergence", Appl. Math. Lett., 13(8), 87-93. https://doi.org/10.1016/S0893-9659(00)00100-2.
  45. Wempner, G.A. (1971), "Discrete approximations related to nonlinear theories of solids", Int. J. Solid. Struct., 7(11), 1581-1599. https://doi.org/10.1016/0020-7683(71)90038-2.
  46. Xenidis, H. and Morfidis, K. (2013), "Nonlinear analysis of thin shallow arches subject to snap-through using truss models", Struct. Eng. Mech., 45(4), 521-542. https://doi.org/10.12989/sem.2013.45.4.521.
  47. Xenidis, H., Morfidis, K. and Papadopoulos, P. (2015), "A method for predicting approximate lateral deflections in thin glass plates", Struct. Eng. Mech., 53(1), 131-146. https://doi.org/10.12989/sem.2015.53.1.131.
  48. Yang, Y.B. and Leu, L.J. (1991), "Constitutive laws and force recovery procedures in nonlinear analysis of trusses", Comput. Meth. Appl. Mech. Eng., 92(1), 121-131. https://doi.org/10.1016/0045-7825(91)90201-G.
  49. Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J., 28(12), 2110-2116. https://doi.org/10.2514/3.10529.
  50. Yang, Y.B., Leu, L.J. and Yang, J.P. (2007), "Key considerations in tracing the postbuckling response of structures with multi winding loops", Mech. Adv. Mater. Struct., 14(3), 175-189. https://doi.org/10.1080/15376490600723578.
  51. Zardi, I. and Alamatian, J. (2020), "A new formulation for fictitious mass of viscous dynamic relaxation method", Mech. Bas. Des. Struct. Mach., 48(5), 542-567. https://doi.org/10.1080/15397734.2019.1633342