Acknowledgement
This work was accomplished during a postdoctoral research program of the first author (Ali Maghami) at the department of Industrial Engineering of the Ferdowsi University of Mashhad. Ali Maghami was supported by a grant from Ferdowsi University of Mashhad, Iran (No. FUM 67230).
References
- Abbasi, M., Namadchi, A. and Alamatian, J. (2021), "Lagrangian interpolation for kinetic dynamic relaxation method with the variable load factor", J. Brazil. Soc. Mech. Sci. Eng., 43(2), 1-11. https://doi.org/10.1007/s40430-021-02819-7.
- Akbas, S.D. (2018), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36. https://doi.org/10.12989/sem.2018.66.1.027.
- Ansari, R., Hasrati, E., Shakouri, A., Bazdid-Vahdati, M. and Rouhi, H. (2018), "Nonlinear large deformation analysis of shells using the variational differential quadrature method based on the six-parameter shell theory", Int. J. Nonlin. Mech., 106, 130-143. https://doi.org/10.1016/j.ijnonlinmec.2018.08.007.
- Batoz, J.L. and Dhatt, G. (1979), "Incremental displacement algorithms for nonlinear problems", Int. J. Numer. Meth. Eng., 14(8), 1262-1267. https://doi.org/10.1002/nme.1620140811.
- Batoz, J.L., Bathe, K.J. and Ho, L.W. (1980), "A study of threenode triangular plate bending elements", Int. J. Numer. Meth. Eng., 15(12), 1771-1812. https://doi.org/10.1002/nme.1620151205.
- Bergan, P.G. (1980), "Solution algorithms for nonlinear structural problems", Comput. Struct., 12(4), 497-509. https://doi.org/10.1016/0045-7949(80)90125-X.
- Bergan, P.G. and Soreide, T. (1973), "A comparative study of different numerical solution techniques as applied to a nonlinear structural problem", Comput. Meth. Appl. Mech. Eng., 2(2), 185-201. https://doi.org/10.1016/0045-7825(73)90014-5.
- Bergan, P.G., Horrigmoe, G., Brakeland, B. and Soreide, T.H. (1978), "Solution techniques for non-linear finite element problems", Int. J. Numer. Meth. Eng., 12(11), 1677-1696. https://doi.org/10.1002/nme.1620121106.
- Boshrouei Shargh, G. and Barati, R. (2021), "Estimation of inelastic seismic input energy", Soil Dyn. Earthq. Eng., 142, 106505. https://doi.org/10.1016/j.soildyn.2020.106505.
- Carrera, E. (1994), "A study on arc-length-type methods and their operation failures illustrated by a simple model", Comput. Struct., 50(2), 217-229. https://doi.org/10.1016/0045-7949(94)90297-6.
- Chan, S.L. (1988), "Geometric and material non-linear analysis of beam-columns and frames using the minimum residual displacement method", Int. J. Numer. Meth. Eng., 26(12), 2657-2669. https://doi.org/10.1002/nme.1620261206.
- Crisfield, M.A. (1983), "An arc-length method including line searches and accelerations", Int. J. Numer. Meth. Eng., 19(9), 1269-1289. https://doi.org/10.1002/nme.1620190902.
- Darvishi, M. and Barati, A. (2007), "A fourth-order method from quadrature formulae to solve systems of nonlinear equations", Appl. Math. Comput., 188(1), 257-261. https://doi.org/10.1016/j.amc.2006.09.115.
- Derakhshandeh, S.Y. and Pourbagher, R. (2016), "Application of high-order Newton-like methods to solve power flow equations", IET Gener., Transm. Distrib., 10(8), 1853-1859. https://doi.org/10.1049/iet-gtd.2015.0998.
- Elnashai, A.S. (2001), "Advanced inelastic static (pushover) analysis for earthquake applications", Struct. Eng. Mech., 12(1), 51-70. https://doi.org/10.12989/sem.2001.12.1.051.
- Eriksson, A. (1998), "Structural instability analyses based on generalised path-following", Comput. Meth. Appl. Mech. Eng., 156(1-4), 45-74. https://doi.org/10.1016/S0045-7825(97)00200-4.
- Gillman, A.S., Fuchi, K. and Buskohl, P.R. (2019), "Discovering sequenced origami folding through nonlinear mechanics and topology optimization", J. Mech. Des., 141(4), 041401. https://doi.org/10.1115/1.4041782.
- Habibi, A. and Bidmeshki, S. (2018), "A dual approach to perform geometrically nonlinear analysis of plane truss structures", Steel Compos. Struct., 27(1), 13-25. https://doi.org/10.12989/scs.2018.27.1.013.
- Homeier, H. (2004), "A modified Newton method with cubic convergence: the multivariate case", J. Comput. Appl. Math., 169(1), 161-169. https://doi.org/10.1016/j.cam.2003.12.041.
- Jarratt, P. (1966), "Some fourth order multipoint iterative methods for solving equations", Math. Comput., 20(95), 434-437. https://doi.org/10.2307/2003602.
- Kadapa, C. (2021), "A simple extrapolated predictor for overcoming the starting and tracking issues in the arc-length method for nonlinear structural mechanics", Eng. Struct., 234, 111755. https://doi.org/10.1016/j.engstruct.2020.111755.
- Kiran, R. and Khandelwal, K. (2018), "On the application of multipoint Root-Solvers for improving global convergence of fracture problems", Eng. Fract. Mech., 193, 77-95. https://doi.org/10.1016/j.engfracmech.2018.02.031.
- Kiran, R., Li, L. and Khandelwal, K. (2015), "Performance of cubic convergent methods for implementing nonlinear constitutive models", Comput. Struct., 156, 83-100. https://doi.org/10.1016/j.compstruc.2015.04.011.
- Leon, S.E., Lages, E.N., de Araujo, C.N. and Paulino, G.H. (2014), "On the effect of constraint parameters on the generalized displacement control method", Mech. Res. Commun., 56, 123-129. https://doi.org/10.1016/j.mechrescom.2013.12.009.
- Leon, S.E., Paulino, G.H., Pereira, A., Menezes, I.F.M. and Lages, E.N. (2011), "A unified library of nonlinear solution schemes", Appl. Mech. Rev., 64(4), 040803. https://doi.org/10.1115/1.4006992.
- Levy, R. and Spillers, W.R. (2013), Analysis of Geometrically Nonlinear Structures, Springer Science & Business Media.
- Liu, K. and Paulino, G.H. (2017), "Nonlinear mechanics of nonrigid origami: An efficient computational approach", Proc. Roy. Soc. A: Math., Phys. Eng. Sci., 473(2206), 20170348. https://doi.org/10.1098/rspa.2017.0348.
- Maghami, A. and Hosseini, S.M. (2021), "Intelligent step-length adjustment for adaptive pathfollowing in nonlinear structural mechanics based on group method of data handling neural network", Mech. Adv. Mater. Struct., 1-28. https://doi.org/10.1080/15376494.2021.1880677.
- Maghami, A. and Schillinger, D. (2020), "A stiffness parameter and truncation error criterion for adaptive path following in structural mechanics", Int. J. Numer. Meth. Eng., 121(5), 967-989. https://doi.org/10.1002/nme.6253.
- Maghami, A., Hosseini, S.M. and Shahabian, F. (2019), "Geometrically nonlinear analysis of structures using various higher order solution methods: A comparative analysis for large deformation", Comput. Model. Eng. Sci., 121(3), 877-907. https://doi.org/10.32604/cmes.2019.08019
- Maghami, A., Shahabian, F. and Hosseini, S.M. (2018), "Path following techniques for geometrically nonlinear structures based on Multi-point methods", Comput. Struct., 208, 130-142. https://doi.org/10.1016/j.compstruc.2018.07.005.
- Masoodi, A.R. and Arabi, E. (2018), "Geometrically nonlinear thermomechanical analysis of shell-like structures", J. Therm. Stress., 41(1), 37-53. https://doi.org/10.1080/01495739.2017.1360166.
- Nguyen, T.N., Lee, S., Nguyen-Xuan, H. and Lee, J. (2019), "A novel analysis-prediction approach for geometrically nonlinear problems using group method of data handling", Comput. Meth. Appl. Mech. Eng., 354, 506-526. https://doi.org/10.1016/j.cma.2019.05.052.
- Nguyen, T.N., Nguyen-Xuan, H. and Lee, J. (2020), "A novel data-driven nonlinear solver for solid mechanics using time series forecasting", Finite Elem. Anal. Des., 171, 103377. https://doi.org/10.1016/j.finel.2019.103377.
- Norouzzadeh, A. and Ansari, R. (2020), "On the isogeometric analysis of geometrically nonlinear shell structures with the consideration of surface energies", Eur. Phys. J. Plus, 135(2), 1-30. https://doi.org/10.1140/epjp/s13360-020-00257-3.
- Pagani, A. and Carrera, E. (2017), "Large-deflection and postbuckling analyses of laminated composite beams by Carrera Unified Formulation", Compos. Struct., 170, 40-52. https://doi.org/10.1016/j.compstruct.2017.03.008.
- Petkovic, M.S., Neta, B., Petkovic, L.D. and Dzunic, J. (2014), "Multipoint methods for solvingnonlinear equations: A survey", Appl. Math. Comput., 226, 635-660. https://doi.org/10.1016/j.amc.2013.10.072.
- Ramm, E. (1981), "Strategies for tracing the nonlinear response near limit points", Nonlinear Finite Element Analysis in Structural Mechanics, Springer, Berlin, Heidelberg.
- Rezaiee-Pajand, M., Ghalishooyan, M. and Salehi-Ahmadabad, M. (2013a), "Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods", Struct. Eng. Mech., 48(6), 849-878. https://doi.org/10.12989/sem.2013.48.6.849.
- Rezaiee-Pajand, M., Ghalishooyan, M. and Salehi-Ahmadabad, M. (2013b), "Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods", Struct. Eng. Mech., 48(6), 879-914. https://doi.org/10.12989/sem.2013.48.6.879.
- Riks, E. (1972), "The application of Newton's method to the problem of elastic stability", J. Appl. Mech., 39(4), 1060-1065. https://doi.org/10.1115/1.3422829.
- Shuang, F., Xiao, P., Bai, Y. and Ke, F. (2020), "Accelerated molecular statics based on atomic inertia effect", Commun. Comput. Phys., 28(3), 1019-1037. https://doi.org/10.4208/cicp.OA-2019-0157.
- Wang, T. (2020), "Two new triangular thin plate/shell elements based on the absolute nodal coordinate formulation", Nonlin. Dyn., 99, 2707-2725. https://doi.org/10.1007/s11071-019-05448-x.
- Weerakoon, S. and Fernando, T. (2000), "A variant of Newton's method with accelerated third-order convergence", Appl. Math. Lett., 13(8), 87-93. https://doi.org/10.1016/S0893-9659(00)00100-2.
- Wempner, G.A. (1971), "Discrete approximations related to nonlinear theories of solids", Int. J. Solid. Struct., 7(11), 1581-1599. https://doi.org/10.1016/0020-7683(71)90038-2.
- Xenidis, H. and Morfidis, K. (2013), "Nonlinear analysis of thin shallow arches subject to snap-through using truss models", Struct. Eng. Mech., 45(4), 521-542. https://doi.org/10.12989/sem.2013.45.4.521.
- Xenidis, H., Morfidis, K. and Papadopoulos, P. (2015), "A method for predicting approximate lateral deflections in thin glass plates", Struct. Eng. Mech., 53(1), 131-146. https://doi.org/10.12989/sem.2015.53.1.131.
- Yang, Y.B. and Leu, L.J. (1991), "Constitutive laws and force recovery procedures in nonlinear analysis of trusses", Comput. Meth. Appl. Mech. Eng., 92(1), 121-131. https://doi.org/10.1016/0045-7825(91)90201-G.
- Yang, Y.B. and Shieh, M.S. (1990), "Solution method for nonlinear problems with multiple critical points", AIAA J., 28(12), 2110-2116. https://doi.org/10.2514/3.10529.
- Yang, Y.B., Leu, L.J. and Yang, J.P. (2007), "Key considerations in tracing the postbuckling response of structures with multi winding loops", Mech. Adv. Mater. Struct., 14(3), 175-189. https://doi.org/10.1080/15376490600723578.
- Zardi, I. and Alamatian, J. (2020), "A new formulation for fictitious mass of viscous dynamic relaxation method", Mech. Bas. Des. Struct. Mach., 48(5), 542-567. https://doi.org/10.1080/15397734.2019.1633342