DOI QR코드

DOI QR Code

A posteriori error estimation via mode-based finite element formulation using deep learning

  • Jung, Jaeho (Korea Atomic Energy Research Institute) ;
  • Park, Seunghwan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Lee, Chaemin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2022.04.12
  • 심사 : 2022.05.31
  • 발행 : 2022.07.25

초록

In this paper, we propose a new concept for error estimation in finite element solutions, which we call mode-based error estimation. The proposed error estimation predicts a posteriori error calculated by the difference between the direct finite element (FE) approximation and the recovered FE approximation. The mode-based FE formulation for the recently developed self-updated finite element is employed to calculate the recovered solution. The formulation is constructed by searching for optimal bending directions for each element, and deep learning is adopted to help find the optimal bending directions. Through various numerical examples using four-node quadrilateral finite elements, we demonstrate the improved predictive capability of the proposed error estimator compared with other competitive methods.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2018R1A2B3005328). This work was also supported by the "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20184030202000). This research was supported by a GPU server support program supervised by the NIPA (National IT Industry Promotion Agency).

참고문헌

  1. Ainsworth, M., Zhu, J.Z., Craig, A.W. and Zienkiewicz, O.C. (1989), "Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method", Int. J. Numer. Meth. Eng., 28(9), 2161-2174. https://doi.org/10.1002/nme.1620280912.
  2. Babuska, I. and Miller, A.D. (1987), "A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator", Comput. Meth. Appl. Mech. Eng., 61, 1-40. https://doi.org/10.1016/0045-7825(87)90114-9.
  3. Babuska, I. and Rheinboldt, W. (1979), "Analysis of optimal finite-element meshes in R1", Math. Comput., 33(146), 435-463. https://doi.org/10.1090/S0025-5718-1979-0521270-2.
  4. Babuska, I. and Rheinboldt, W.C. (1978), "A-posteriori error estimates for the finite element method", Int. J. Numer. Meth. Eng., 12(10), 1597-1615. https://doi.org/10.1002/nme.1620121010.
  5. Bank, R.E. (1986), "Analysis of a local a posteriori error estimate for elliptic equations, in Babuska", Accuracy Estimates and Adaptive Refinements in Finite Element Computations, 119, https://ci.nii.ac.jp/naid/10010425158.
  6. Bank, R.E. and Weiser, A. (1985), "Some a posteriori error estimators for elliptic partial differential equations", Math. Comput., 44(170), 283-301. https://doi.org/10.2307/2007953.
  7. Bathe, K.J. (2006), Finite Element Procedures, Klaus-Jurgen Bathe, Watertown, MA, USA.
  8. Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York, NY, USA.
  9. Hinton, E. and Campbell, J.S. (1974), "Local and global smoothing of discontinuous finite element functions using a least squares method", Int. J. Numer. Meth. Eng., 8, 461-480. https://doi.org/10.1002/nme.1620080303.
  10. Jun, H., Yoon, K., Lee, P.S. and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Meth. Appl. Mech. Eng., 337, 458-480. https://doi.org/10.1016/j.cma.2018.04.007.
  11. Jung, J., Jun, H. and Lee, P.S. (2021), "Self-updated four-node finite element using deep learning", Comput. Mech., 69(1), 23-44. https://doi.org/10.1007/s00466-021-02081-7.
  12. Jung, J., Yoon, K. and Lee, P.S. (2020), "Deep learned finite elements", Comput. Meth. Appl. Mech. Eng., 372, 113401. https://doi.org/10.1016/j.cma.2020.113401.
  13. Kelly, D.W., De S. R. Gago, J.P., Zienkiewicz, O.C. and Babuska, I. (1983), "A posteriori error analysis and adaptive processes in the finite element method: Part I-error analysis", Int. J. Numer. Meth/ Eng., 19(11), 1593-1619. https://doi.org/10.1002/nme.1620191103.
  14. Kim, S. and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43. https://doi.org/10.1016/j.compstruc.2018.03.001.
  15. Kojic, M. and Bathe, K.J. (2005), Inelastic Analysis of Solids and Structures, Springer, Berlin.
  16. Kunert, G. and Nicaise, S. (2003), "Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes", Math. Model. Numer. Anal., 37(6), 1013-1043. https://doi.org/10.1051/m2an:2003065.
  17. Lee, C. and Kim, S. (2020), "Towards improving finite element solutions automatically with enriched 2D solid elements", Struct. Eng. Mech., 76(3), 379-393. https://doi.org/10.12989/sem.2020.76.3.379.
  18. Lee, C., Kim, S. and Lee, P.S. (2021), "The strain-smoothed 4-node quadrilateral finite element", Comput. Meth. Appl. Mech. Eng., 373, 113481. https://doi.org/10.1016/j.cma.2020.113481.
  19. Lee, C. and Lee, P.S. (2018), "A new strain smoothing method for triangular and tetrahedral finite elements", Comput. Meth. Appl. Mech. Eng., 341, 939-955. https://doi.org/10.1016/j.cma.2018.07.022.
  20. Lee, C. and Lee, P.S. (2019), "The strain-smoothed MITC3+ shell finite element", Comput. Struct., 223, 106096. https://doi.org/10.1016/j.compstruc.2019.07.005.
  21. Mota, A. and Abel, J.F. (2000), "On mixed finite element formulations and stress recovery techniques", Int. J. Numer. Meth. Eng., 47(1-3), 191-204. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<191::AID-NME767>3.0.CO;2-S.
  22. Oliver, J. and Fuenmayor, F. (1993), "Analysis of the effectivity of the Zienkiewicz-Zhu error estimator", WIT Trans. Built Environ., 2, 309-324.
  23. Ozakca, M. (2003), "Comparison of error estimation methods and adaptivity for plane stress/strain problems", Struct. Eng. Mech., 15(5), 579-608. https://doi.org/10.12989/sem.2003.15.5.579.
  24. Rank, E. and Zienkiewicz, O. (1987), "A simple error estimator in the finite element method", Commun. Numer. Meth. Eng., 3(3), 243-249. https://doi.org/10.1002/cnm.1630030311.
  25. Tang, X. and Sato, T. (2004), "A posteriori error estimate and hadaptive fe analysis of liquefaction with large deformation", Doboku Gakkai Ronbunshu, 2004(778), 1-15. https://doi.org/10.2208/jscej.2004.778_1
  26. Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineerng analysis", Int. J. Numer. Meth. Eng., 24(2), 337-357. https://doi.org/10.1002/cnm.1630030311.
  27. Zienkiewicz, O.C. and Zhu, J.Z. (1992a), "The superconvergent patch recovery (SPR) and adaptive finite element refinement", Comput. Meth. Appl. Mech. Eng., 101(1-3), 207-224. https://doi.org/10.1016/0045-7825(92)90023-D.
  28. Zienkiewicz, O.C. and Zhu, J.Z. (1992b), "The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique", Int. J. Numer. Meth. Eng., 33(7), 1331-1364. https://doi.org/10.1002/nme.1620330702.
  29. Zienkiewicz, O.C. and Zhu, J.Z. (1992c), "The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity", Int. J. Numer. Meth. Eng., 33(7), 1365-1382. https://doi.org/10.1002/nme.1620330703.