Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2018R1A2B3005328). This work was also supported by the "Human Resources Program in Energy Technology" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resources from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20184030202000). This research was supported by a GPU server support program supervised by the NIPA (National IT Industry Promotion Agency).
References
- Ainsworth, M., Zhu, J.Z., Craig, A.W. and Zienkiewicz, O.C. (1989), "Analysis of the Zienkiewicz-Zhu a-posteriori error estimator in the finite element method", Int. J. Numer. Meth. Eng., 28(9), 2161-2174. https://doi.org/10.1002/nme.1620280912.
- Babuska, I. and Miller, A.D. (1987), "A feedback element method with a posteriori error estimation: Part I. The finite element method and some basic properties of the a posteriori error estimator", Comput. Meth. Appl. Mech. Eng., 61, 1-40. https://doi.org/10.1016/0045-7825(87)90114-9.
- Babuska, I. and Rheinboldt, W. (1979), "Analysis of optimal finite-element meshes in R1", Math. Comput., 33(146), 435-463. https://doi.org/10.1090/S0025-5718-1979-0521270-2.
- Babuska, I. and Rheinboldt, W.C. (1978), "A-posteriori error estimates for the finite element method", Int. J. Numer. Meth. Eng., 12(10), 1597-1615. https://doi.org/10.1002/nme.1620121010.
- Bank, R.E. (1986), "Analysis of a local a posteriori error estimate for elliptic equations, in Babuska", Accuracy Estimates and Adaptive Refinements in Finite Element Computations, 119, https://ci.nii.ac.jp/naid/10010425158.
- Bank, R.E. and Weiser, A. (1985), "Some a posteriori error estimators for elliptic partial differential equations", Math. Comput., 44(170), 283-301. https://doi.org/10.2307/2007953.
- Bathe, K.J. (2006), Finite Element Procedures, Klaus-Jurgen Bathe, Watertown, MA, USA.
- Cook, R.D. (2007), Concepts and Applications of Finite Element Analysis, John Wiley & Sons, New York, NY, USA.
- Hinton, E. and Campbell, J.S. (1974), "Local and global smoothing of discontinuous finite element functions using a least squares method", Int. J. Numer. Meth. Eng., 8, 461-480. https://doi.org/10.1002/nme.1620080303.
- Jun, H., Yoon, K., Lee, P.S. and Bathe, K.J. (2018), "The MITC3+ shell element enriched in membrane displacements by interpolation covers", Comput. Meth. Appl. Mech. Eng., 337, 458-480. https://doi.org/10.1016/j.cma.2018.04.007.
- Jung, J., Jun, H. and Lee, P.S. (2021), "Self-updated four-node finite element using deep learning", Comput. Mech., 69(1), 23-44. https://doi.org/10.1007/s00466-021-02081-7.
- Jung, J., Yoon, K. and Lee, P.S. (2020), "Deep learned finite elements", Comput. Meth. Appl. Mech. Eng., 372, 113401. https://doi.org/10.1016/j.cma.2020.113401.
- Kelly, D.W., De S. R. Gago, J.P., Zienkiewicz, O.C. and Babuska, I. (1983), "A posteriori error analysis and adaptive processes in the finite element method: Part I-error analysis", Int. J. Numer. Meth/ Eng., 19(11), 1593-1619. https://doi.org/10.1002/nme.1620191103.
- Kim, S. and Lee, P.S. (2018), "A new enriched 4-node 2D solid finite element free from the linear dependence problem", Comput. Struct., 202, 25-43. https://doi.org/10.1016/j.compstruc.2018.03.001.
- Kojic, M. and Bathe, K.J. (2005), Inelastic Analysis of Solids and Structures, Springer, Berlin.
- Kunert, G. and Nicaise, S. (2003), "Zienkiewicz-Zhu error estimators on anisotropic tetrahedral and triangular finite element meshes", Math. Model. Numer. Anal., 37(6), 1013-1043. https://doi.org/10.1051/m2an:2003065.
- Lee, C. and Kim, S. (2020), "Towards improving finite element solutions automatically with enriched 2D solid elements", Struct. Eng. Mech., 76(3), 379-393. https://doi.org/10.12989/sem.2020.76.3.379.
- Lee, C., Kim, S. and Lee, P.S. (2021), "The strain-smoothed 4-node quadrilateral finite element", Comput. Meth. Appl. Mech. Eng., 373, 113481. https://doi.org/10.1016/j.cma.2020.113481.
- Lee, C. and Lee, P.S. (2018), "A new strain smoothing method for triangular and tetrahedral finite elements", Comput. Meth. Appl. Mech. Eng., 341, 939-955. https://doi.org/10.1016/j.cma.2018.07.022.
- Lee, C. and Lee, P.S. (2019), "The strain-smoothed MITC3+ shell finite element", Comput. Struct., 223, 106096. https://doi.org/10.1016/j.compstruc.2019.07.005.
- Mota, A. and Abel, J.F. (2000), "On mixed finite element formulations and stress recovery techniques", Int. J. Numer. Meth. Eng., 47(1-3), 191-204. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<191::AID-NME767>3.0.CO;2-S.
- Oliver, J. and Fuenmayor, F. (1993), "Analysis of the effectivity of the Zienkiewicz-Zhu error estimator", WIT Trans. Built Environ., 2, 309-324.
- Ozakca, M. (2003), "Comparison of error estimation methods and adaptivity for plane stress/strain problems", Struct. Eng. Mech., 15(5), 579-608. https://doi.org/10.12989/sem.2003.15.5.579.
- Rank, E. and Zienkiewicz, O. (1987), "A simple error estimator in the finite element method", Commun. Numer. Meth. Eng., 3(3), 243-249. https://doi.org/10.1002/cnm.1630030311.
- Tang, X. and Sato, T. (2004), "A posteriori error estimate and hadaptive fe analysis of liquefaction with large deformation", Doboku Gakkai Ronbunshu, 2004(778), 1-15. https://doi.org/10.2208/jscej.2004.778_1
- Zienkiewicz, O.C. and Zhu, J.Z. (1987), "A simple error estimator and adaptive procedure for practical engineerng analysis", Int. J. Numer. Meth. Eng., 24(2), 337-357. https://doi.org/10.1002/cnm.1630030311.
- Zienkiewicz, O.C. and Zhu, J.Z. (1992a), "The superconvergent patch recovery (SPR) and adaptive finite element refinement", Comput. Meth. Appl. Mech. Eng., 101(1-3), 207-224. https://doi.org/10.1016/0045-7825(92)90023-D.
- Zienkiewicz, O.C. and Zhu, J.Z. (1992b), "The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique", Int. J. Numer. Meth. Eng., 33(7), 1331-1364. https://doi.org/10.1002/nme.1620330702.
- Zienkiewicz, O.C. and Zhu, J.Z. (1992c), "The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity", Int. J. Numer. Meth. Eng., 33(7), 1365-1382. https://doi.org/10.1002/nme.1620330703.