DOI QR코드

DOI QR Code

Nonlinear probabilistic shear panel analysis using advanced sampling techniques

  • Strauss, Alfred (Department of Civil Engineering and Natural Hazards, University of Natural Resources and Life Sciences) ;
  • Ju, Hyunjin (School of Architecture and Design Convergence, Hankyong National University) ;
  • Belletti, Beatrice (Department of Engineering and Architecture, University of Parma) ;
  • Ramstorfer, Maximilian (Department of Civil Engineering and Natural Hazards, University of Natural Resources and Life Sciences) ;
  • Cosma, Mattia Pancrazio (Department of Engineering and Architecture, University of Parma)
  • Received : 2022.01.13
  • Accepted : 2022.05.01
  • Published : 2022.07.25

Abstract

The shear behaviour of reinforced concrete members has been studied over the past decades by various researchers, and it can be simulated by analysing shear panel elements which has been regarded as a basic element of reinforced concrete members subjected to in-plane biaxial stresses. Despite various experimental studies on shear panel element which have been conducted so far, there are still a lot of uncertainties related to what influencing factors govern the shear behaviour and affect failure mechanism in reinforced concrete members. To identify the uncertainties, a finite element analysis can be used, which enables to investigate the impact of specific variables such as the reinforcement ratio, the shear retention factor, and the material characteristics including aggregate interlock, tension stiffening, compressive softening, and shear behaviour at the crack surface. In this study, a non-linear probabilistic analysis was conducted on reinforced concrete panels using a finite element method optimized for reinforced concrete members and advanced sampling techniques so that probabilistic analysis can be performed effectively. Consequently, this study figures out what analysis methodology and input parameters have the most influence on shear behaviour of reinforced concrete panels.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT) (No. 2021R1C1C2093437). Authors Strauss and Ramstorfer also thank IABSE COM1 and the Czech Science Foundation, Czech Republic, under project number 22-00774S.

References

  1. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(3), 155-177. https://doi.org/10.1007/BF02486267.
  2. Bazant, Z.P. and Planas, J. (1998), Fracture and Size Effect in Concrete and other Quasibrittle Materials, CRC Press LLC, Boca Raton, FL, USA.
  3. Bazant, Z.P. and Yu, Q. (2005), "Designing against size effect on shear strength of reinforced concrete beams without stirrups: I. Formulation", J. Struct. Eng., 131(12), 1877-1885. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:12(1877).
  4. Belletti, B., Damoni, C., den Uijl, J.A., Hendriks, M.A.M. and Walraven, J.C. (2013), "Shear resistance evaluation of prestressed concrete bridge beams: fib Model Code 2010 guidelines for level IV approximations", Struct. Concrete, 14(3), 242-249. https://doi.org/10.1002/suco.201200046.
  5. Belletti, B., Scolari, M. and Vecchi, F. (2017), "PARC_CL 2.0 crack model for NLFEA of reinforced concrete structures under cyclic loadings", Comput. Struct., 191(15), 165-179. https://doi.org/10.1016/j.compstruc.2017.06.008.
  6. Belletti, B., Vecchi, F., Cosma, M.P. and Strauss, A. (2019), "Nonlinear structural analyses of prestressed concrete girders: Tools and safety formats", 6th International Symposium on Life-Cycle Civil Engineering, IALCCE 2018, Ghent, Belgium; October.
  7. CEB-FIP (2012), Model Code 2010: Design Code, Comite Euro-International Du Beton.
  8. CEN (2004), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, BS EN 1992-1-1:2004.
  9. Ceresa, P., Petrini, L. and Pinho, R. (2007), "Flexure-shear fiber beam-column elements for modeling frame structures under seismic loading-State of the art", J. Earthq. Eng., 11(1), 46-88. https://doi.org/10.1080/13632460701280237.
  10. Cervenka, V. (1985), "Constitutive model for cracked reinforced concrete", J. Proc., 82(6), 877-882.
  11. Cervenka, V., Jendele, L. and Cervenka, J. (2007), ATENA Program Documentation-Part 1: Theory, Cervenka Consulting, Prague, Czech Republic.
  12. Cervenka, V., Jendele, L. and Cervenka, J. (2016), ATENA Program Documentation-Part 1: Theory, Cervenka Consulting, Prague, Czech Republic.
  13. Cervenka, V., Pukl, R., Ozbolt, J. and Eligehausen, R. (1995), "Mesh sensitivity effects in smeared finite element analysis of concrete fracture", FRAMCOS-2, Freiburg, German.
  14. Cho, H.C., Lee, D.H., Ju, H., Park, H.C., Kim, H.Y. and Kim, K.S. (2017a), "Fire damage assessment of reinforced concrete structures using fuzzy theory", Appl. Sci., 7(5), 518. https://doi.org/10.3390/app7050518.
  15. Cho, H.C., Park, M.K., Ju, H., Oh, J.Y., Oh, O.H. and Kim, K.S. (2017b), "Shear strength reduction factor of prestressed hollowcore slab units based on the reliability approach", Adv. Mater. Sci. Eng., 2017, Article ID 8280317. https://doi.org/10.1155/2017/8280317.
  16. Collins, M.P., Bentz, E.C. and Sherwood, E.G. (2008), "Where is shear reinforcement required? Review of research results and design procedures", ACI Struct. J., 105(5), 590-600.
  17. Crisfield, M.A. and Wills, J. (1989), "Analysis of reinforced concrete panels using different concrete models", J. Eng. Mech., ASCE, 115(3), 578-597. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:3(578).
  18. Darwin, D. and Pecknold, D.A.W. (1974), "Inelastic model for cyclic biaxial loading of reinforced concrete", Civil Engineering Studies, University of Illinois, July.
  19. Dyngeland, T. (1989), "Behavior of reinforced concrete panels", Dissertation, Trondheim University, Norway.
  20. Garcia, J.M.B and Bernat, A.R.M. (2006), "Coupled model for the non-linear analysis of anisotropic sections subjected to general 3D loading, Part 1: Theoretical formulation", Comput. Struct., 84(31), 2254-2263. https://doi.org/10.1016/j.compstruc.2006.08.036.
  21. Hendriks, M.A.N., de Boer, A. and Belletti, B. (2017), Guidelines for Nonlinear Finite Element Analysis of Concrete Structures, Rijkswaterstaat Centre for Infrastructure, Report RTD:1016-1.
  22. Hibbitt, H., Karlsson, B. and Sorensen, P. (2011), ABAQUS Analysis User's Manual. Version 6.10, Dassault Systems Simulia, RI, USA.
  23. Hsu, T.T.C and Mo, Y.L. (1985), "Softening of concrete in torsional members-theory and tests", ACI Struct. J., 82(3), 290-303.
  24. Ju, H., Han, S.J., Choi, I.S., Choi, S., Park, M.K. and Kim, K.S. (2018), "Experimental study on an optimized-section precast slab with structural aesthetics", Appl. Sci., 8(8), 1234. https://doi.org/10.3390/app8081234.
  25. Ju, H., Han, S.J., Joo, H.E., Cho, H.C., Kim, K.S. and Oh, Y.H. (2019), "Shear performance of optimized-section precast slab with tapered cross section", Sustain., 11(1), 163. https://doi.org/10.3390/su11010163.
  26. Ju, H., Lee, D.H., Hwang, J.H., Kim, K.S. and Oh, Y.H. (2013), "Fixed-angle smeared-truss approach with direct tension force transfer model for torsional behaviour of steel fiber-reinforced concrete members", J. Adv. Concrete Technol., 11(9), 215-229. https://doi.org/10.3151/jact.11.215.
  27. Kabele, P. (2002), "Equivalent continuum model of multiple cracking", Eng. Mech., 9, 75-90.
  28. Kim, C., Park, H.G., Hong, G., Lee, H. and Suh, J.I. (2018), "Shear strength of RC-composite beams with prestressed concrete and non-prestressed concrete", ACI Struct. J., 115(4), 917-930. https://doi.org/10.14359/51702224.
  29. Kollegger, J. and Mehlhorn, G.E. (1988), "Experimentelle und analytische untersuchungen zur aufstellung eines materialmodels fuer gerissene stahbetonscheiben", Nr.6 Forschungsbericht, Massivbau, Gesamthochschule Kassel.
  30. Kolmar, W. (1986), "Beschreibung der Kraftuebertragung uber Risse in nichtlinearen Finite-Element-Berechnungen von Stahlbetontragwerken", Dissertation, T.H. Darmstadt.
  31. Kupfer, H., Hilsdorf, H.K. and Rusch, H. (1969), "Behaviour of Concrete under Biaxial Stresses", J. ACI, Proc., 66(8), 656-666.
  32. Lee, D.H., Han. S.J., Hwang, J.H., Ju, H. and Kim, K.S. (2017), "Simplification and verification of dual potential capacity model for reinforced concrete beams subjected to shear", Struct. Concrete, 18(2), 259-277. https://doi.org/10.1002/suco.201600055.
  33. Lehky, D. and Somodikova, M. (2015), "Small-sample artificial neural network based response surface method for reliability analysis of concrete bridges", Proceedings of the Fourth International Symposium on Life-Cycle Civil Engineering (IALCCE 2014)-Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management, Taylor & Francis Group, London, UK.
  34. Lehky, D. and Somodikova, M. (2017), "Reliability calculation of time-consuming problems using a small-sample artificial neural network-based response surface method", Neur. Comput. Appl., 28(6), 1249-1263. https://doi.org/10.1007/s00521-016-2485-3.
  35. Lemaire, M. (2013), Structural Reliability, John Wiley & Sons.
  36. Mansour, M. and Hsu, T.T.C. (2006), "Behaviour of reinforced concrete elements under cyclic shear. I: Experiments", J. Struct. Eng., 131(1), 44-53. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(44).
  37. Mari, A., Bairan, J., Cladera, A., Oller, E. and Ribas, C. (2015), "Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams", Struct. Infrastr. Eng., 11(11), 1399-1419. https://doi.org/10.1080/15732479.2014.964735.
  38. McKay, M.D., Conover, W.J. and Beckman, R.J. (1979), "A comparison of three methods for selecting values of input variables in the analysis of output from a computer code", Technometr., 21(2), 239-245. https://doi.org/10.2307/1268522.
  39. Novak, D., Vorechovsky, M. and Rusina, R. (2003), "Small-sample probabilistic assessment-FREET software", Proc. of 9th Int. Conf. on Applications of Statistics and Probability in Civil Engineering-ICASP 9, San Francisco, USA.
  40. Novak, D., Vorechovsky, M. and Teply, B. (2014), "FReET: Software for the statistical and reliability analysis of engineering problems and FReET-D: Degradation module", Adv. Eng. Softw., 72, 179-192. https://doi.org/10.1016/j.advengsoft.2013.06.011.
  41. Novak, L. and Novak, D. (2018), "Polynomial chaos expansion for surrogate modelling: Theory and software", Beton-und Stahlbetonbau, 113(2), 27-32. https://doi.org/10.1002/best.201800048.
  42. Resan, K. and Hussien, Z.Y. (2019), Steps of ANSYS (Added New Material And Fatigue Properties).
  43. Routil, L., Lehky, D., Simonova, H., Kucharczykova, B., Kersner, Z., Novak, T., Zimmermann, T., Strauss, A. and Krug B. (2014), "Experimental-computational determination of mechanical fracture parameters of concrete for probabilistic life-cycle assessment", Proceedings of IALCCE 2014, Tokyo, Japan.
  44. Russo, G., Somma, G. and Mitri, D. (2005), "Shear strength analysis and prediction for reinforced concrete beams without stirrups", J. Struct. Eng., 131(1), 66-74. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:1(66).
  45. Strauss, A., Krug, B., Slowik, O. and Novak, D. (2017), "Combined shear and flexure performance of prestressing concrete T-shaped beams: Experiment and deterministic modelling", Struct. Concrete, 19(1), 16-35. https://doi.org/10.1002/suco.201700079.
  46. Strauss, A., Lehky, D., Novak, D., Bergmeister, K. and Santa, U. (2004), "Probabilistic response identification and monitoring of concrete structures", Beton-und Stahlbetonbau, 99(12), 967-974. https://doi.org/10.1002/best.200490282
  47. Strauss, A., Wan-Wendner, R., Vidovic, A., Zambon, I., Yu, Q., Frangopol, D.M. and Bergmeister, K. (2017), "Gamma prediction models for long-term creep deformations of prestressed concrete bridges", J. Civil Eng. Manage., 23(6), 681-698. https://doi.org/10.3846/13923730.2017.1335652.
  48. Strauss, A., Zimmermann, T., Lehky, D., Novak, D. and Kersner, Z. (2014), "Stochastic fracture-mechanical parameters for the performance-based design of concrete structures", Struct. Concrete, 15(3), 380-394. https://doi.org/10.1002/suco.201300077.
  49. Vecchio, F.J. and Collins, M.P. (1982), "The response of reinforced concrete to in-plane shear and normal stresses", Department of Civil Engineering, University of Toronto, Ontario, Canada.
  50. Vecchio, F.J. and Collins, M.P. (1986), "Modified compression-field theory for reinforced concrete beams subjected to shear", ACI Journal, Proc., 19(17), 219-231.
  51. Vorechovsky, M. (2012), "Correlation control in small-sample Monte Carlo type simulations II: Analysis of estimation formulas, random correlation and perfect uncorrelatedness", Probab. Eng. Mech., 29, 105-120. https://doi.org/10.1016/j.probengmech.2011.09.004.
  52. Vorechovsky, M. and Novak, D. (2009), "Correlation control in small-sample Monte Carlo type simulations I: A simulated annealing approach", Probab. Eng. Mech., 24(3), 452-462. https://doi.org/10.1016/j.probengmech.2009.01.004.