Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1F1A1048422).
References
- ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- Ashour, A.F. (2000), "Shear capacity of reinforced concrete deep beams", J. Struct. Eng., 126, 1045-1052. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:9(1045).
- Bazant, Z.P., Ozbolt, J. and Eligehausen, R. (1994), "Fracture size effect: Review of evidence for concrete structures", J. Struct. Eng., 120(8), 2377-2398. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2377).
- Breiman, L. (2001), "Random forests", Mach. Learn., 45, 5-32. https://doi.org/10.1023/A:1010933404324.
- Choi, K.K., Park, H.G. and Wight, J.K. (2007), "Unified shear strength model for reinforced concrete beams-Part I: Development", ACI Struct. J., 104(2), 142-152.
- Collins, M.P., Bentz, E.C. and Sherwood, E.G. (2008), "Where is shear reinforcement required? Review of research results and design procedures", ACI Struct. J., 105(5), 590-599.
- Hanson, J.W. (1961), "Tensile strength and diagonal tension resistance of structural lightweight concrete", ACI J., 58(7), 1-40.
- Hwang, S.J., Lu, W.Y. and Lee, H.J. (2000), "Shear strength prediction for deep beams", ACI Struct. J., 97(3), 367-376.
- Jung, S. and Kim, K.S. (2008), "Knowledge-based prediction of shear strength of concrete beams without shear reinforcement", Eng. Struct., 30(6), 1515-1525. https://doi.org/10.1016/j.engstruct.2007.10.008.
- Lee, D.H., Kim, K.S., Han, S.J., Zhang, D. and Kim, J. (2018), "Dual potential capacity model for reinforced concrete short and deep beams subjected to shear", Struct. Concrete, 19(1), 76-85. https://doi.org/10.1002/suco.201700202.
- Liu, J. and Mihaylov, B.I. (2016), "A comparative study of models for shear strength of reinforced concrete deep beams", Eng. Struct., 112, 81-89. https://doi.org/10.1016/j.engstruct.2016.01.012.
- Markou, G. and Bakas, N.P. (2021), "Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3d nonlinear finite element analysis", Comput. Concrete, 28(6), 533-547. https://doi.org/10.12989/cac.2021.28.6.533.
- Marzec, I., Skarzynskia, L., Bobinskib, J. and Tejchmanc, J. (2013), "Modelling reinforced concrete beams under mixed shear-tension failure with different continuous fe approaches", Comput. Concrete, 12(5), 585-612. https://doi.org/10.12989/cac.2013.12.5.585.
- Matamoros, A.B. and Wong, K.H. (2003), "Design of simply supported deep beams using strut-and-tie models", ACI Struct. J., 100(6), 704-712.
- Mau, S.T. and Hsu, T.T.C. (1989), "Formula for the shear strength of deep beams", ACI Struct. J., 86(5), 516-523.
- Mihaylov, B.I., Bentz, E.C. and Collins, M.P. (2010), "Behavior of large deep beams subjected to monotonic and reversed cyclic shear", ACI Struct. J., 107(6), 726-734.
- Muttoni, A. and Ruiz, M.F. (2008), "Shear strength of members without transverse reinforcement as function of critical shear crack width", ACI Struct. J., 105(2), 163-172.
- Park, H.G., Choi, K.K. and Wight, J.K. (2006), "Strain-based shear strength model for slender beams without web reinforcement", ACI Struct. J., 103(6), 783-793.
- Park, J.W. and Kuchma, D.A. (2007), "Strut-and-tie model analysis for strength prediction of deep beams", ACI Struct. J., 104(6), 657-666.
- Reineck, K.H., Bentz, E., Fitik, B., Kuchma, D.A. and Bayrak, O. (2014), "Aci-dafstb databases for shear tests on slender reinforced concrete beams with stirrups", ACI Struct. J., 111(5), 1147-1156. https://doi.org/10.14359/51686819
- Reineck, K.H., Bentz, E.C., Fitik, B., Kuchma, D.A. and Bayrak, O. (2013), "Aci-dafstb database of shear tests on slender reinforced concrete beams without stirrups", ACI Struct. J., 110(5), 867-990.
- Rodrigues, R.V., Muttoni, A. and Ruiz, M.F. (2010), "Influence of shear on rotation capacity of reinforced concrete members without shear reinforcement", ACI Struct. J., 107(5), 516-525.
- Russo, G., Venir, R. and Pauletta, M. (2005), "Reinforced concrete deep beams-shear strength model and design formula", ACI Struct. J., 102(3), 429-437.
- Sayali, D.J. and Channe, H.P. (2016), "Comparative study of KNN, Naive Bayes and decision tree classification techniques", Int. J. Sci. Res., 5(1), 1842-1845. https://doi.org/10.21275/v5i1.nov153131.
- Tan, K.H. and Cheng, G.H. (2006), "Size effect on shear strength of deep beams: Investigating with strut-and-tie model", J. Struct. Eng., 132(5), 673-685. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:5(673).
- Tang, C.Y. and Tan, K.H. (2004), "Interactive mechanical model for shear strength of deep beams", J. Struct. Eng., 130(10), 1534-1544. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:10(1534).
- Theodoridis, S. (2020), Machine Learning: A Bayesian and Optimization Perspective, 2nd Edition, Academic Press, San Diego, CA, USA.
- Tureyen, A.K. and Frosch, R.J. (2003), "Concrete shear strength: Another perspective", ACI Struct. J., 100(5), 609-615.
- Yang, K.H. and Ashour, A.F. (2011), "Strut-and-tie model based on crack band theory for deep beams", J. Struct. Eng., 137(10), 1030-1038. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000351.
- Zararis, P.D. (2003), "Shear compression failure in reinforced concrete deep beams", J. Struct. Eng., 129(4), 544-553. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:6(991).
- Zhang, W., Lee, D., Lee, J. and Lee, C. (2021a), "Residual strength of concrete subjected to fatigue based on machine learning technique", Struct. Concrete, 2021, 1-14. https://doi.org/10.1002/suco.202100082.
- Zhang, W., Lee, D.H., Ikechukwu, O. and Okonkwo, M. (2021b), "Nonlinear shear analysis of corroded rc beams considering bond mechanism", ACI Struct. J., 118(6), 47-61. https://doi.org/10.14359/51732996.
- Zivari, A., Habibi, A. and Khaledy, N. (2019), "Development of an analytical method for optimum design of reinforced concrete beams considering both flexural and shear effects", Comput. Concrete, 24(2), 117-123. https://doi.org/10.12989/cac.2019.24.2.117.