DOI QR코드

DOI QR Code

Machine learning models for predicting the compressive strength of concrete containing nano silica

  • Garg, Aman (Department of Aerospace Engineering, Indian Institute of Technology Kanpur) ;
  • Aggarwal, Paratibha (Department of Civil Engineering, National Institute of Technology Kurukshetra) ;
  • Aggarwal, Yogesh (Department of Civil Engineering, National Institute of Technology Kurukshetra) ;
  • Belarbi, M.O. (Laboratoire de Recherche en Genie Civil, LRGC. Universite de Biskra) ;
  • Chalak, H.D. (Department of Civil Engineering, National Institute of Technology Kurukshetra) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University) ;
  • Gulia, Reeta (Department of Civil Engineering, DPG Institute of Technology and Management)
  • 투고 : 2022.01.20
  • 심사 : 2022.06.07
  • 발행 : 2022.07.25

초록

Experimentally predicting the compressive strength (CS) of concrete (for a mix design) is a time-consuming and laborious process. The present study aims to propose surrogate models based on Support Vector Machine (SVM) and Gaussian Process Regression (GPR) machine learning techniques, which can predict the CS of concrete containing nano-silica. Content of cement, aggregates, nano-silica and its fineness, water-binder ratio, and the days at which strength has to be predicted are the input variables. The efficiency of the models is compared in terms of Correlation Coefficient (CC), Root Mean Square Error (RMSE), Variance Account For (VAF), Nash-Sutcliffe Efficiency (NSE), and RMSE to observation's standard deviation ratio (RSR). It has been observed that the SVM outperforms GPR in predicting the CS of the concrete containing nano-silica.

키워드

과제정보

The research work presented in the present article receives no funding or grant in any form.

참고문헌

  1. Abhilash, P.P., Nayak, D.K., Sangoju, B., Kumar, R. and Kumar, V. (2021), "Effect of nano-silica in concrete; A review", Constr. Build. Mater., 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347.
  2. Aggarwal, P., Singh, R.P. and Aggarwal, Y. (2015), "Use of nano-silica in cement based materials-A review", Cogent Eng., 2(1), 1078018. https://doi.org/10.1080/23311916.2015.1078018.
  3. Armaghani, D.J., Hajihassani, M., Sohaei, H., Mohamad, E.T., Marto, A., Motaghedi, H. and Moghaddam, M.R. (2015), "Neuro-fuzzy technique to predict air-overpressure induced by blasting", Arab. J. Geosci., 8(12), 10937-10950. https://doi.org/10.1007/s12517-015-1984-3.
  4. Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, C. Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computingbased techniques for concrete beams shear strength", Procedia Struct. Integr., 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.
  5. Asteris, P.G. and Kolovos, K.G (2019), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 31, 409-424. https://doi.org/10.1007/s00521-017-3007-7.
  6. Asteris, P.G., Apostolopoulou, M., Skentou A.D. and Moropoulou, A. (2019a), "Application of artificial neural networks for the prediction of the CS of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.
  7. Asteris, P.G., Argyropoulos, I., Cavaleri, L., Rodrigues, H., Varum, H., Thomas, J. and Lourenco, P.B. (2019c), "Masonry compressive strength prediction using Artificial Neural Networks", International Conference on Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage, October.
  8. Asteris, P.G., Armaghani, D.J., Karayannis, C.G. and Pilakoutas, K. (2019b), "Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks", Comput. Concrete, 24(5), 469-488. https://doi.org/10.12989/cac.2019.24.5.469.
  9. Asteris, P.G., Lourenco, P.B., Roussis, P.C., Elpid, C., Armaghani, D.J., Cavaleri, L., Chalioris, C.E., Hajihassani, M., Lemonis, M.E., Mohammed, A.S. and Pilakoutas, K. (2022b), "Revealing the nature of metakaolin-based concrete materials using artificial intelligence techniques", Constr. Build. Mater., 322, 126500. https://doi.org/10.1016/j.conbuildmat.2022.126500.
  10. Asteris, P.G., Nozhati, S., Nikoo, M., Cavaleri, L. and Nikoo, M. (2019d), "Krill herd algorithm-based neural network in structural seismic reliability evaluation", Mech. Adv. Mater. Struct., 26(13), 1146-1153. https://doi.org/10.1080/15376494.2018.1430874.
  11. Asteris, P.G., Rizal, F.I.M., Koopialipoor, M., Roussis, P.C., Ferentinou, M., Armaghani, D.J. and Gordan, B. (2022a), "Slope stability classification under seismic conditions using several tree-based intelligent techniques", Appl. Sci., 12(3), 1753. https://doi.org/10.3390/app12031753.
  12. Bashir, R. and Ashour, A. (2012), "Neural network modelling for shear strength of concrete members reinforced with FRP bars", Compos. Part B, 43(8), 3198-3207. https://doi.org/10.1016/j.compositesb.2012.04.011.
  13. Biswas, R., Bardhan, A., Samui, P., Rai, B., Nayak, S. and Armaghani, D.J. (2021), "Efficient soft computing techniques for the prediction of compressive strength of geopolymer concrete", Comput. Concrete, 28(2), 221-232. https://doi.org/10.12989/cac.2021.28.2.221.
  14. Chopra, P., Sharma, R.K., Kumar, M. and Chopra, T. (2018), "Comparison of machine learning techniques for the prediction of CS of concrete", Adv. Civil Eng., 2018, 5481705. https://doi.org/10.1155/2018/5481705.
  15. Duan, Z.H., Kou, S.C. and Poon, C.S. (2013), "Prediction of CS of recycled aggregate concrete using artificial neural networks", Constr. Build. Mater., 40, 1200-1206. https://doi.org/10.1016/j.conbuildmat.2012.04.063.
  16. Emad, W., Salih, A., Kurda, R., Asteris, P.G. and Hassan A. (2022), "Nonlinear models to predict stress versus strain of early age strength of flowable ordinary Portland cement", Eur. J. Environ. Civil Eng., 1-25. https://doi.org/10.1080/19648189.2022.2028189.
  17. Erdal, H.I., Karakurt, O. and Namli, E. (2013), "High performance concrete CS forecasting using ensemble models based on discrete wavelet transform", Eng. Appl. Artif. Intell., 26(4), 1246-1254. https://doi.org/10.1016/j.engappai.2012.10.014.
  18. Garg A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Houari, M.S.A. (2021), "A review of available theories and methodologies for the analysis of nano isotropic, nano functionally graded, and CNT reinforced nanocomposite structures", Arch. Comput. Meth. Eng., 1-34. https://doi.org/10.1007/s11831-021-09652-0.
  19. Harandizadeh, H., Armaghani, D.J., Asteris, P.G. and Gandomi, A.H. (2021), "TBM performance prediction developing a hybrid ANFIS-PNN predictive model optimized by ICA", Neur. Comput. Appl., 33(23), 16149-16179. https://doi.org/10.1007/s00521-021-06217-x.
  20. Heirati, A., Zandi, Y., Tafreshi, S.T. and Behruyan, M. (2021), "Analysis of the superplasticizer demand using computer simulation", Adv. Nano Res., 11(5), 565-579. https://doi.org/10.12989/anr.2021.11.5.565.
  21. Hoang, N.D., Pham, A.D., Nguyen, Q.L. and Pham, Q.N. (2016), "Estimating compressive strength of high performance concrete with gaussian process regression model", Adv. Civil Eng., 2016, 2861380. https://doi.org/10.1155/2016/2861380.
  22. Hou, P.K., Kawashima, S., Wang, K.J., Corr, D.J., Qian, J.S. and Shah, S.P. (2013), "Effects of colloidal nanosilica on rheological and mechanical properties of fly ash-cement mortar", Cement Concrete Compos., 35(1), 12-22. https://doi.org/10.1016/j.cemconcomp.2012.08.027.
  23. Kardani, N., Bardhan, A., Samui, P., Nazem, M., Asteris, P.G. and Zhou, A. (2022), "Predicting the thermal conductivity of soils using integrated approach of ANN and PSO with adaptive and time-varying acceleration coefficients", Int. J. Therm. Sci., 173, 107427. https://doi.org/10.1016/j.ijthermalsci.2021.107427.
  24. Kooshafar, M. and Madani, H. (2020), "An investigation on the influence of nano silica morphology on the characteristics of cement composites", J. Build. Eng., 30, 101293. https://doi.org/10.1016/j.jobe.2020.101293.
  25. Le, TT., Asteris, P.G. and Lemonis, M.E. (2021), "Prediction of axial load capacity of rectangular concrete-filled steel tube columns using machine learning techniques", Eng. Comput., 1-34. https://doi.org/10.1007/s00366-021-01461-0.
  26. Lemonis, M.E., Daramara, A.G., Georgiadou, A.G., Siorikis, V.G., Tsavdaridis, K.D. and Asteris, P.G. (2022), "Ultimate axial load of rectangular concrete-filled steel tubes using multiple ANN activation functions", Steel Compos. Struct., 42(4), 459-475. https://doi.org/10.12989/scs.2022.42.4.459.
  27. Li, L.G., Zhua, J., Huang, Z.H., Kwan, A.K.H. and Li, L.J. (2017), "Combined effects of micro-silica and nano-silica on durability of mortar", Constr. Build. Mater., 157, 337-347. https://doi.org/10.1016/j.conbuildmat.2017.09.105.
  28. Liu, J., Xing, Y., Song, K. and Wang, W. (2021), "Experimental and numerical study on fire resistance of tubed steel-reinforced concrete stub columns under eccentric compression", Steel Compos. Struct., 41(4), 549-566. https://doi.org/10.12989/scs.2021.41.4.549.
  29. Lu, S., Koopialipoor, M., Asteris, P.G., Bahri, M. and Armaghani, D.J. (2020), "A novel feature selection approach based on tree models for evaluating the punching shear capacity of steel fiber-reinforced concrete flat slabs", Mater., 13(17), 3902. https://doi.org/10.3390/ma13173902.
  30. Mahjoobi, M., Bidgoli, M.R. and Mazaheri, H. (2021), "Dynamic analysis of quadrilateral concrete foundation integrated with NFRP layers based on numerical method", Adv. Nano Res., 11(5), 537-546. https://doi.org/10.12989/anr.2021.11.5.537.
  31. Mohammed, H.R.M. and Ismail, S. (2021), "Proposition of new computer artificial intelligence models for shear strength prediction of reinforced concrete beams", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-021-01400-z.
  32. Omran, B.A., Chen, Q. and Jin, R. (2016), "Comparison of data mining techniques for predicting CS of environmentally friendly concrete", J. Comput. Civil Eng., 30(6), 04016029. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000596.
  33. Oraka, M. and Sajedi, F. (2021), "Investigating the effect of using three pozzolans separately and in combination on the properties of self-compacting concrete", Adv. Nano Res., 11(2), 141-155. https://doi.org/10.12989/anr.2021.11.2.141.
  34. Ozcan, G., Kocak, Y. and Gulbandilar, E. (2017), "Estimation of CS of BFS and WTRP blended cement mortars with machine learning models", Comput. Concrete, 19(3), 275-282. https://doi.org/10.12989/cac.2017.19.3.275.
  35. Pham, A.D., Ngo, N.T., Nguyen, Q.T. and Truong, N.S. (2020), "Hybrid machine learning for predicting strength of sustainable concrete", Soft Comput., 24, 14965-14980. https://doi.org/10.1007/s00500-020-04848-1.
  36. Pirooznia, A. and Moradloo, A.J. (2021), "Seismic fracture analysis of concrete arch dams incorporating the loading rate dependent size effect of concrete", Struct. Eng. Mech., 79(2), 169-198. https://doi.org/10.12989/sem.2021.79.2.169.
  37. Psyllaki, P., Stamatiou, K., Iliadis, I., Mourlas, A., Asteris, P. and Vaxevanidis, N. (2018), "Surface treatment of tool steels against galling failure", MATEC Web of Conferences, 188, 04024. https://doi.org/10.1051/matecconf/201818804024.
  38. Sedghi, Y., Zandi, Y., Paknahad, M., Assilzadeh, H. and Khadimallah, M.A. (2021), "Optimization of shear connectors with high strength nano concrete using soft computing techniques", Adv. Nano Res., 11(6), 595-606. https://doi.org/10.12989/anr.2021.11.6.595.
  39. Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung N.T. and Shariati, A. (2022), "A novel hybrid extreme learning machine-grey wolf optimizer (ELMGWO) model to predict compressive strength of concrete with partial replacements for cement", Eng. Comput., 38, 757-779. https://doi.org/10.1007/s00366-020-01081-0.
  40. Siddique, R., Aggarwal, P. and Aggarwal, Y. (2011), "Prediction of CS of self-compacting concrete containing bottom ash using artificial neural networks", Adv. Eng. Softw., 42, 780-786. https://doi.org/10.1016/j.advengsoft.2011.05.016.
  41. Song, H., Ahmad, A., Farooq, F., Ostrowski, K.A., Maslak, M., Czarnecki, S. and Aslam, F. (2021b), "Predicting the CS of concrete with fly ash admixture using machine learning algorithms", Constr. Build. Mater., 308, 125021. https://doi.org/10.1016/j.conbuildmat.2021.125021.
  42. Song, X., Huang, Y., Huang, O. and Zheng, H. (2021a), "Fatigue behavior of GFRP-concrete composite decks: An experimental and numerical study", Struct. Eng. Mech., 80(3), 301-312. https://doi.org/10.12989/sem.2021.80.3.301.
  43. Sun, K.Q., Zhang, N. Liu, X. and Tao, Y.X. (2021), "An equivalent single-layer theory for free vibration analysis of steel-concrete composite beams", Steel Compos. Struct., 38(3), 281-291. https://doi.org/10.12989/scs.2021.38.3.281.
  44. Yanzhen, Q., Zandi, Y., Rahimi, A., Pourkhorshidi, S., Roco-Videla, A. Khadimallah, M.A., Jameel, M., Kasehchi, E. and Assilzadeh, H. (2021), "Nano-SiO2 for efficiency of geotechnical properties of fine soils in mining and civil engineering", Adv. Nano Res., 11(3), 301-312. https://doi.org/10.12989/anr.2021.11.3.301.
  45. Yaseen, M.Z., Deo, R.C., Hilal, A., Abd, A.M., Bueno, L.C., Salcedo-Sanz, S. and Nehdi, M.L. (2018), "Predicting CS of lightweight foamed concrete using extreme learning machine model", Adv. Eng. Softw., 115, 112-125. https://doi.org/10.1016/j.advengsoft.2017.09.004.
  46. Yaswanth, K.K, Revathy, J. and Gajalakshmi, P. (2021), "Artificial intelligence for the compressive strength prediction of novel ductile geopolymer composites", Comput. Concrete, 28(1), 55-68. https://doi.org/10.12989/cac.2021.28.1.055.
  47. Zhang, M.H., Islam, J. and Peethamparan, S. (2012), "Use of nano-silica to increase early strength and reduce setting time of concretes with high volumes of slag", Cement Concrete Compos., 34, 650-662. https://doi.org/10.1016/j.cemconcomp.2012.02.005.
  48. Zhang, Y., Shan, B., Kang, T.H.K. and Xiao, Y. (2021), "Axial impact behavior of confined concrete filled square steel tubes using fiber reinforced polymer", Steel Compos. Struct., 38(2), 165-176. https://doi.org/10.12989/scs.2021.38.2.165.
  49. Zhao, Y., Zhong, X. and Foong, L.K. (2021), "Predicting the splitting tensile strength of concrete using an equilibrium optimization model", Steel Compos. Struct., 39(1), 81-93. https://doi.org/10.12989/scs.2021.39.1.081.
  50. Zhou, H., Li, S., Zhang, C. and Naser, M.Z. (2021), "Modeling fire performance of externally prestressed steel-concrete composite beams", Steel Compos. Struct., 41(5), 625-636. https://doi.org/10.12989/scs.2021.41.5.625.