과제정보
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under grant number (RGP.2/155/43).
참고문헌
- Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dyn., 17(03), 1750033. https://doi.org/10.1142/S021945541750033X.
- Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125.
- Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579.
- Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(07), 1750100. https://doi.org/10.1142/S1758825117501009.
- Akbas, S.D. (2018), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
- Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39. https://doi.org/10.12989/anr.2018.6.1.039.
- Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219. https://doi.org/10.12989/anr.2018.6.3.219.
- Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. http://doi.org/10.22059/jcamech.2019.281285.392.
- Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277. https://doi.org/10.12989/anr.2020.8.4.277.
- Alfven, H. (1942), "Existence of electromagnetic-hydrodynamic waves", Nature, 150(3805), 405-406. https://doi.org/10.1038/150405d0.
- Ali, A., Al-Sulaiman, F.A., Al-Duais, I.N., Irshad, K., Malik, M.Z., Shafiullah, M., … & Malik, S.A. (2021), "Renewable portfolio standard development assessment in the Kingdom of Saudi Arabia from the perspective of policy networks theory", Proc., 9(7), 1123. https://doi.org/10.3390/pr9071123.
- Alkanhal, T. A., Sheikholeslami, M., Usman, M., Haq, R.U., Shafee, A., Al-Ahmadi, A.S. and Tlili, I. (2019), "Thermal management of MHD nanofluid within the porous medium enclosed in a wavy shaped cavity with square obstacle in the presence of radiation heat source", Int. J. Heat Mass Transf., 139, 87-94. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.006.
- Ayodeji, F., Tope, A. and Samuel, O. (2019), "Magneto-Hydrodynamics (MHD) bioconvection nanofluid slip flow over a stretching sheet with microorganism concentration and bioconvection peclet number effects", Am. J. Mech. Indus. Eng., 4(6), 86-95. https://doi.org/10.11648/j.ajmie.20190406.11.
- Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.
- Choi, S.U. and Eastman, J.A. (1995). "Enhancing thermal conductivity of fluids with nanoparticles", No. ANL/MSD/CP-84938; CONF-951135-29, Argonne National Lab., IL, USA.
- Faizan, M., Ahmed, R. and Ali, H.M. (2021), "A critical review on thermophysical and electrochemical properties of Ionanofluids (nanoparticles dispersed in ionic liquids) and their applications", J. Taiwan Inst. Chem. Eng., 124, 391-423. https://doi.org/10.1016/j.jtice.2021.02.004.
- Gireesha, B.J., Mahanthesh, B. and Rashidi, M.M. (2015), "MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with nonuniform heat source/ sink", Int. J. Indus. Math., 7(3), 247-260.
- Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
- Hassan, A., Wahab, A., Qasim, M.A., Janjua, M.M., Ali, M.A., Ali, H.M., … & Javaid, N. (2020), "Thermal management and uniform temperature regulation of photovoltaic modules using hybrid phase change materials-nanofluids system", Renew. Energy, 145, 282-293. https://doi.org/10.1016/j.renene.2019.05.130.
- Hayat, T. and Mehmood, O.U. (2011), "Slip effects on MHD flow of third order fluid in a planar channel", Commun. Nonlin. Sci. Numer. Simul., 16(3), 1363-1377. https://doi.org/10.1016/j.cnsns.2010.06.034.
- Hayat, T., Asad, S., Mustafa, M. and Alsaedi, A. (2015), "MHD stagnation-point flow of Jeffrey fluid over a convectively heated stretching sheet", Comput. Fluid., 108, 179-185. https://doi.org/10.1016/j.compfluid.2014.11.016.
- Ibanez, G., Lopez, A., Lopez, I., Pantoja, J., Moreira, J. and Lastres, O. (2019), "Optimization of MHD nanofluid flow in a vertical microchannel with a porous medium, nonlinear radiation heat flux, slip flow and convective-radiative boundary conditions", J. Therm. Anal. Calorim., 135(6), 3401-3420. https://doi.org/10.1007/s10973-018-7558-3.
- Ibrahim, W. and Gamachu, D. (2019), "Nonlinear convection flow of Williamson nanofluid past a radially stretching surface", AIP Adv., 9(8), 085026. https://doi.org/10.1063/1.5113688.
- Jeong, J.S. and Lee, S.W. (2021), "Repetitive tip convective transport and its flow physics in a large-scale turbine cascade", Int. Commun. Heat Mass Transf., 126, 105346. https://doi.org/10.1016/j.icheatmasstransfer.2021.105346.
- Jha, B.K. and Apere, C.A. (2013), "Unsteady MHD two-phase Couette flow of fluid-particle suspension", Appl. Math. Model., 37(4), 1920-1931. https://doi.org/10.1016/j.apm.2012.04.056.
- Khan, A., Ali, H. M., Nazir, R., Ali, R., Munir, A., Ahmad, B. and Ahmad, Z. (2019), "Experimental investigation of enhanced heat transfer of a car radiator using ZnO nanoparticles in H2O-ethylene glycol mixture", J. Therm. Anal. Calorim., 138(5), 3007-3021. https://doi.org/10.1007/s10973-019-08320-7.
- Khan, W.A. and Pop, I. (2010), "Boundary-layer flow of a nanofluid past a stretching sheet", Int. J. Heat Mass Transf., 53(11-12), 2477-2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032.
- Kumaran, V. and Ramanaiah, G. (1996), "A note on the flow over a stretching sheet", Acta Mechanica, 116(1), 229-233. https://doi.org/10.35940/ijrte.c4861.098319.
- Kuznetsov, A.V. and Nield, D.A. (2010), "Natural convective boundary-layer flow of a nanofluid past a vertical plate", Int. J. Therm. Sci., 49(2), 243-247. https://doi.org/10.1016/j.ijthermalsci.2009.07.015.
- Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
- Liang, G. and Mudawar, I. (2019), "Review of single-phase and two-phase nanofluid heat transfer in macro-channels and microchannels", Int. J. Heat Mass Transf., 136, 324-354. https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.086.
- Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
- Makinde, O.D. (2010), "Similarity solution of hydromagnetic heat and mass transfer over a vertical plate with a convective surface boundary condition", Int. J. Phys. Sci., 5(6), 700-710.
- Makinde, O.D. and Aziz, A. (2010), "MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition", Int. J. Therm. Sci., 49(9), 1813-1820. https://doi.org/10.1016/j.ijthermalsci.2010.05.015.
- Makinde, O.D., Khan, W.A. and Khan, Z.H. (2013), "Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet", Int. J. Heat Mass Transf., 62, 526-533. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.049.
- Maleki, H., Safaei, M.R., Togun, H. and Dahari, M. (2019), "Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation", J. Therm. Anal. Calorim., 135(3), 1643-1654. https://doi.org/10.1007/s10973-018-7559-2.
- Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
- Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
- Mustafa, M., Hina, S., Hayat, T. and Alsaedi, A. (2013), "Slip effects on the peristaltic motion of nanofluid in a channel with wall properties", J. Heat Transf., 135(4). https://doi.org/10.1115/1.4023038.
- Mustafa, M., Khan, J.A., Hayat, T. and Alsaedi, A. (2015), "Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions", AIP Adv., 5(2), 027106. https://doi.org/10.1063/1.4907927.
- Nadeem, S., Hussain, M. and Naz, M. (2010), "MHD stagnation flow of a micropolar fluid through a porous medium", Meccanica, 45(6), 869-880. https://doi.org/10.1007/s11012-010-9297-9.
- Nasiri, H., Jamalabadi, M.Y.A., Sadeghi, R., Safaei, M.R., Nguyen, T.K. and Shadloo, M.S. (2019), "A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows", J. Therm. Anal. Calorim., 135(3), 1733-1741. https://doi.org/10.1007/s10973-018-7022-4.
- Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M.R., Asgari, A. and Akbari, O.A. (2019), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two lid-driven square cavity", J. Therm. Anal. Calorim., 140(3), 1121-1145. https://doi.org/10.1007/s10973-019-08841-1.
- Pramuanjaroenkij, A., Tongkratoke, A. and Kakac, S. (2018), "Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement", J. Eng. Phys. Thermophys., 91(1), 104-114. https://doi.org/10.1007/s10891-018-1724-0.
- Rashidi, S., Javadi, P. and Esfahani, J.A. (2019), "Second law of thermodynamics analysis for nanofluid turbulent flow inside a solar heater with the ribbed absorber plate", J. Therm. Anal. Calorim., 135(1), 551-563. https://doi.org/10.1007/s10973-018-7164-4.
- Razi, S.M., Soid, S.K., Aziz, A.S.A., Adli, N. and Ali, Z.M. (2019), "Williamson nanofluid flow over a stretching sheet with varied wall thickness and slip effects", J. Phys.: Conf. Ser., 1366(1), 012007. https://doi.org/10.1088/1742-6596/1366/1/012007.
- Saleem, M., Algahtani, A., Rehman, S.U., Javed, M.S., Irshad, K., Ali, H.M., … & Islam, S. (2021), "Solution processed Zn1- x- ySmxCuyO nanorod arrays for dye sensitized solar cells", Nanomater., 11(7), 1710. https://doi.org/10.3390/nano11071710.
- Sayin, E. and Calayir, Y. (2015), "Comparison of linear and nonlinear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
- Sheikholeslami, M., Gerdroodbary, M.B., Moradi, R., Shafee, A. and Li, Z. (2019), "Application of Neural Network for estimation of heat transfer treatment of Al2O3-H23O nanofluid through a channel", Comput. Meth. Appl. Mech. Eng., 344, 1-12. https://doi.org/10.1016/j.cma.2018.09.025.
- Sheikholeslami, M., Mehryan, S.A.M., Shafee, A. and Sheremet, M.A. (2019), "Variable magnetic forces impact on magnetizable hybrid nanofluid heat transfer through a circular cavity", J. Molec. Liquid., 277, 388-396. https://doi.org/10.1016/j.molliq.2018.12.104.
- Siddiqa, S., Begum, N., Saleem, S., Hossain, M.A. and Gorla, R.S.R. (2016), "Numerical solutions of nanofluid bioconvection due to gyrotactic microorganisms along a vertical wavy cone", Int. J. Heat Mass Transf., 101, 608-613. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.076.
- Szilagyi, I.M., Santala, E., Heikkila, M., Kemell, M., Nikitin, T., Khriachtchev, L., … & Leskela, M. (2011), "Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: +ptimising the annealing conditions for obtaining WO3 nanofibers", J. Therm. Anal. Calorim., 105(1), 73-81. https://doi.org/10.1007/s10973-011-1631-5.
- Ullah, A., Shah, Z., Kumam, P., Ayaz, M., Islam, S. and Jameel, M. (2019), "Viscoelastic MHD nanofluid thin film flow over an unsteady vertical stretching sheet with entropy generation", Proc., 7(5), 262. https://doi.org/10.3390/pr7050262.
- Williamson, R.V. (1929), "The flow of pseudoplastic materials", Indus. Eng. Chem., 21(11), 1108-1111. https://doi.org/10.1021/ie5023.
- Zamani, A., Kolahchi, R.,and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.