DOI QR코드

DOI QR Code

Parameter identification of energy consumption dynamic model for double-motor-driven belt conveyers based on Actor-Critic framework

  • Xiao, Li (College of Information Engineering, Tianjin University of Commerce) ;
  • Zhang, Liyi (College of Information Engineering, Tianjin University of Commerce) ;
  • Gao, Feng (National Energy Tianjin Port Co., Ltd.) ;
  • Yan, Zhi (College of Information Engineering, Tianjin University of Commerce) ;
  • Li, Yanqin (College of Information Engineering, Tianjin University of Commerce) ;
  • Song, Wenqiang (College of Information Engineering, Tianjin University of Commerce)
  • Received : 2021.09.04
  • Accepted : 2021.12.17
  • Published : 2022.03.20

Abstract

Research on the energy consumption model of belt conveyors is of great significance when it comes to reducing energy consumption. When compared with a conveyor driven by a single DC motor, the energy consumption model of a conveyor driven by dual motors and its parameter identifications are more complicated. Thus, a data-driven method called Actor-Critic is integrated into the analytical expression method to build an energy consumption model and to estimate the parameters for belt conveyors driven by dual motors. In accordance with the measured current, speed, and capacity, three significant components in the Actor-Critic method, namely action, observation, and reward, are, respectively, designed to estimate parameters without model error disturbance or state operation. Results from experimental studies demonstrate the accuracy and robustness of the proposed method.

Keywords

Acknowledgement

This article was supported by Enterprise Science and Technology Commissioner Project of Tianjin (20YDTPJC00340), Tianjin University and Technology Development Fund Project (2018KJ227), and Innovation and Entrepreneurship Training Program (202110069054).

References

  1. Hou, C., Qiao, T., Qiao, M.: Research on audio-visual detection method for conveyor belt longitudinal tea. IEEE Access. 7, 120202-120213 (2019) https://doi.org/10.1109/access.2019.2937660
  2. Yasutomii, A.Y.: Localization of inspection device along belt conveyors with multiple branches using deep neural networks. IEEE Robot. Autom. Lett. 5(2), 2921-2928 (2020) https://doi.org/10.1109/lra.2020.2974709
  3. Ribeiro, R.G., Junior, J.R.C.: Unmanned aerial vehicle location routing problem with charging stations for belt conveyor inspection system in the mining industry. IEEE Trans. Intell. Transp. Syst. 21(10), 4186-4195 (2020) https://doi.org/10.1109/tits.2019.2939094
  4. de Almeida, A.T.: Energy-efficient motor systems in the industrial and in the services sectors in the European Union: characterisation, potentials, barriers and policies. Energy 28(07), 3673-3690 (2003) https://doi.org/10.1016/S0360-5442(02)00160-3
  5. He, D., Pang, Y., Lodewijks, G.: Determination of acceleration for belt conveyor speed control in transient operation. Int. J. Eng. Technol. 8(05), 485-485 (2012)
  6. Daijie, H., Pang, Y., Lodewijks, G.: Speed control of belt conveyors during transient operation. Powder Technol. 301(07), 622-631 (2016) https://doi.org/10.1016/j.powtec.2016.07.004
  7. Zhu, H., Zhu, W.D., Fan, W.: Dynamic modeling, simulation and experiment of power transmission belt drives: a systematic review. J. Sound Vib. 491(20), 1-41 (2021)
  8. Gao, Y., Qiao, T., Zhang, H., Yang, Y., Xiong, X.: A contactless measuring speed system of belt conveyor based on optical fow techniques. IEEE Access. 7, 121646-121654 (2019) https://doi.org/10.1109/access.2019.2937317
  9. Chen, W., Li, X.: Model predictive control based on reduced order models applied to belt conveyor system. ISA Trans. 65(11), 350-360 (2016) https://doi.org/10.1016/j.isatra.2016.09.007
  10. GENEVA ISO. Continuous mechanical equipment-belt conveyors with idlers-calculation of operating power and tensile forces [S]. ISO 5048, (1989).
  11. BERLIN, DIN. Continuous conveyors-belt conveyors for loose bulk materials-basis for calculation and dimensioning [S]. DIN 22101 (2002).
  12. TOKYO, JIS. Rubber belt conveyors with carrying idlers-calculation of operating power and tensile forces [S]. JIS B 8805, (1992).
  13. Luo, J., Shen, Y.: Energy efficiency optimization of belt conveyor for material problem [C]. In: Proceedings of the IEEE International Conference on Information and Automation. Lijiang, China, pp 122-127 (2015)
  14. Yunfei, M., Taiang, Y.: Optimal scheduling method for belt conveyor system in coal mine considering silo virtual energy storage. Appl. Energy. 275, 115368 (2020) https://doi.org/10.1016/j.apenergy.2020.115368
  15. Zhang, S., Xia, X.: Modeling and energy efficiency optimization of belt conveyors. Appl. Energy 88(9), 3061-3071 (2021) https://doi.org/10.1016/j.apenergy.2011.03.015
  16. Bo, Y., Tao, Y., Hongchun, S., Jun, D., Lin, J.: Robust sliding-mode control of Wind energy conversion systems for optimal power extraction via nonlinear perturbation observers. Appl. Energy. 210, 711-723 (2018) https://doi.org/10.1016/j.apenergy.2017.08.027
  17. Li, S.Z., Wang, H.P., Tian, Y., Aitouch, A., Klein, J.: Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control. ISA Trans. 64, 431-439 (2016) https://doi.org/10.1016/j.isatra.2016.06.003
  18. Ebrahimkhani, S.: Robust fractional order sliding mode control of doubly-fed induction generator (DFIG)-based wind turbines. ISA Trans. 63, 343-354 (2016) https://doi.org/10.1016/j.isatra.2016.03.003
  19. Liu, Y., Wu, Q.H., Zhou, X.X., Jiang, L.: Perturbation observer based multiloop control for the DFIG-WT in multimachine power system. IEEE Trans. Power Syst. 29(6), 2905-2915 (2014) https://doi.org/10.1109/TPWRS.2014.2308900
  20. Bo, Y., Jingbo, W., Junting, W.: Robust fractional-order PID control of supercapacitor energy storage systems for distribution network applications: a perturbation compensation based approach. J. Clean. Prod. 279, 123362 (2020) https://doi.org/10.1016/j.jclepro.2020.123362
  21. Suleimenov, K.: Disturbance observer-based integral sliding mode control for wind energy conversion systems. Wind Energy 23(4), 1026-1047 (2020) https://doi.org/10.1002/we.2471
  22. Ning, G.: Finite control set model predictive control integrated with disturbance observer for battery energy power conversion system. J. Power Electron. 21(2), 342-353 (2021) https://doi.org/10.1007/s43236-020-00197-2
  23. Wei, Z., Hu, J., He, H., Li, Y., Xiong, B.: Load current and state-of-charge coestimation for current sensor-free lithium-ion battery. IEEE Trans. Power Electron. 36(10), 10970-10975 (2021) https://doi.org/10.1109/TPEL.2021.3068725
  24. Hu, J., He, H., Wei, Z., Li, Y.: Disturbance-immune and aging-robust internal short circuit diagnostic for lithium-ion battery. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3063968
  25. Shen, Y., Xia, X.: Adaptive parameter estimation for an energy model of belt conveyor with DC motor. Asian J. Control. 16(4), 1122-1132 (2014) https://doi.org/10.1002/asjc.776
  26. Wu, J., Wei, Z., Liu, K., Quan, Z., Li, Y.: Battery-involved energy management for hybrid electric bus based on expert-assistance deep deterministic policy gradient algorithm. IEEE Trans. Veh. Technol. 69(11), 12786-12796 (2020) https://doi.org/10.1109/tvt.2020.3025627
  27. Wei, Z., Quan, Z., Wu, J., Li, Y., Pou, J., Zhong, H.: Deep deterministic policy gradient-DRL enabled multiphysics-constrained fast charging of lithium-ion battery. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2021.3070514
  28. Wang, S., Diao, R., Xu, C.: On multi-event co-calibration of dynamic model parameters using soft actor-critic. IEEE Trans. Power Syst. 36(01), 521-524 (2021) https://doi.org/10.1109/TPWRS.2020.3030164
  29. Qi, X.: Rotor resistance and excitation inductance estimation of an induction motor using deep-Q-learning algorithm. Eng. Appl. Artif. Intell. 72, 67-79 (2018) https://doi.org/10.1016/j.engappai.2018.03.018
  30. Xing, Qi., Qian, Z.: Data-driven induction motor parameters offine identifcation method based on actor-critic framework. Trans. China Electrotech. Soc. 34(09), 1875-1885 (2019)
  31. Yang, H., Xie, X.: An actor-critic deep reinforcement learning approach for transmission scheduling in cognitive internet of things systems. IEEE Syst. J. 14(02), 51-60 (2020) https://doi.org/10.1109/JSYST.2019.2891520
  32. Wang, S.: On multi-event co-calibration of dynamic model parameters using soft actor-critic. IEEE Trans. Power Syst. 36(01), 521-524 (2021) https://doi.org/10.1109/TPWRS.2020.3030164
  33. Han, M.: Actor-critic reinforcement learning for control with stability guarantee. IEEE Robot. Autom. Lett. 5(4), 6217-6224 (2020) https://doi.org/10.1109/lra.2020.3011351