Acknowledgement
This paper was supported by the Fundamental Research Funds for the Central Universities (HUST: 2021yjsCXCY013).
References
- Kurs, A., et al.: Wireless power transfer via strongly coupled magnetic resonances. Science 317(5834), 83-86 (2007) https://doi.org/10.1126/science.1143254
- Zhang, Z., Pang, H., Georgiadis, A., Cecati, C.: Wireless power transfer-an overview. IEEE Trans. Ind. Electron. 66(2), 1044-1058 (2019) https://doi.org/10.1109/tie.2018.2835378
- Deng, J., Lu, F., Li, W., et al.: ZVS double-side LCC compensated resonant inverter with magnetic integration for electric vehicle wireless charger. In: Applied Power Electronics Conference and Exposition, pp. 1131-1136. IEEE (2015)
- Mohammad, M., Kwak, S., Choi, S.: Core design for better misalignment tolerance and higher range of wireless charging for HEV. In: IEEE Applied Power Electronics Conference and Exposition. IEEE (2016)
- Hoang, H., Lee, S., Kim, Y., et al.: An adaptive technique to improve wireless power transfer for consumer electronics. IEEE Trans. Consum. Electron. 58(2), 327-332 (2012) https://doi.org/10.1109/TCE.2012.6227430
- Ean, K.K., Chuan, B.T., Imura, T., et al.: Impedance matching and power division algorithm considering cross coupling for wireless power transfer via magnetic resonance. In: Intelec 2012. IEEE (2012)
- Theilmann, P.T., Asbeck, P.M.: An analytical model for inductively coupled implantable biomedical devices with ferrite rods. IEEE Trans. Biomed. Circuits Syst. 3(1), 43-52 (2009) https://doi.org/10.1109/TBCAS.2008.2004776
- Cuong, N., Pavan, K., Minh, N., et al.: Wireless power transfer for autonomous wearable neurotransmitter sensors. Sensors 15(9), 24553-24572 (2015) https://doi.org/10.3390/s150924553
- Kim, G., Boo, S., Kim, S., et al.: Control of power distribution for multiple receivers in SIMO wireless power transfer system. J. Electromagn. Eng. Sci. 18(4), 221-230 (2018) https://doi.org/10.26866/jees.2018.18.4.221
- Kim, S., Hwang, S., Kim, S., et al.: Investigation of single-input multiple-output wireless power transfer systems based on optimization of receiver loads for maximum efficiencies. J. Electromagn. Eng. Sci. 18(3), 145-153 (2018) https://doi.org/10.26866/jees.2018.18.3.145
- Yang, G., Moghadam, M., Zhang, R.: Magnetic MIMO signal processing and optimization for wireless power transfer. IEEE Trans. Signal Process. 65(11), 2860-2874 (2017) https://doi.org/10.1109/TSP.2017.2673816
- Qi, Z., Mei, S., Yao, S., et al.: Field orientation based on current amplitude and phase angle control for wireless power transfer. IEEE Trans. Ind. Electron. PP(99), 1 (2017)
- Zhang, C., Lin, D., Hui, S.Y.: Basic control principles of omni-directional wireless power transfer. IEEE Trans. Power Electron. 31(7), 5215-5227 (2016) https://doi.org/10.1109/TPEL.2015.2479246
- Kamotesov, S., Lombard, P., Semet, V., et al.: Omni-directional inductive wireless charging of a 3D receiver cube inside a box. In: 2018 IEEE Wireless Power Transfer Conference (WPTC), Montreal, Canada, 2018, pp. 1-4
- Feng, J., Li, Q., Lee, F.C.: Coil and circuit design of omnidirectional wireless power transfer system for portable device application. In: 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, USA, 2018, pp. 914-920
- Tan, L., Zhong, R., Tang, Z., et al.: Power stability optimization design of three-dimensional wireless power transmission system in multi-load application scenarios. IEEE Access PP(99), 1 (2020)
- Budhia, M., Covic, G.A., Boys, J.T.: Design and optimization of circular magnetic structures for lumped inductive power transfer systems. IEEE Trans. Power Electron. 26(11), 3096-3108 (2011) https://doi.org/10.1109/TPEL.2011.2143730
- Nagendra, G.R., Covic, G.A., Boys, J.T.: Determining the physical size of inductive couplers for IPT EV systems. Emerg. Sel. Top. Power Electron. IEEE J. 2(3), 571-583 (2014) https://doi.org/10.1109/JESTPE.2014.2302295
- Wang, M., Jing, F., Shi, Y., et al.: Demagnetization weakening and magnetic field concentration with ferrite core characterization for efcient wireless power transfer. IEEE Trans. Ind. Electron. PP, 1 (2018) https://doi.org/10.1109/TIE.2018.2840485
- Xiong, M., Wei, X., Huang, Y., et al.: Research on novel flexible high-saturation nanocrystalline cores for wireless charging systems of electric vehicles. IEEE Trans. Ind. Electron. PP(99), 1 (2020)
- Choi, B.H., Thai, V.X., Lee, E.S., et al.: Dipole-coil-based wide-range inductive power transfer systems for wireless sensors. IEEE Trans. Ind. Electron. 63(5), 3158-3167 (2016) https://doi.org/10.1109/TIE.2016.2517061
- Park, C., Lee, S., Cho, G.H., Rim, C.T.: Innovative 5-m-off-distance inductive power transfer systems with optimally shaped dipole coils. IEEE Trans. Power Electron. 30(2), 817-827 (2014) https://doi.org/10.1109/TPEL.2014.2310232
- Choi, B.H., Lee, E.S., Sohn, Y.H., et al.: Six degrees of freedom mobile inductive power transfer by crossed dipole Tx and Rx coils. IEEE Trans. Power Electron. 31(4), 1-1 (2015) https://doi.org/10.1109/TPEL.2015.2510224
- Kar, D.P., Biswal, S., Sahoo, P.K., et al.: Selection of maximum power transfer region for resonant inductively coupled wireless charging system. AEU Int. J. Electron. Commun. 84, 84-92 (2017)
- Zhang Y. Key technologies of magnetically-coupled resonant wireless power transfer. Ph.D. dissertation, Dept. Elect. Eng., Tsinghua Univ. Beijing, Beijing, China (2018)
- Fu, M., Zhang, T., Ma, C., et al.: Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems. IEEE Trans. Microw. Theory Tech. 63(3), 801-812 (2015) https://doi.org/10.1109/TMTT.2015.2398422