DOI QR코드

DOI QR Code

Auxiliary current control for improving unloading transient recovery of buck converter

  • Kim, Dongwook (Department of Smart Cities, Chung-Ang University) ;
  • Shin, Jong‑Won (School of Energy Systems Engineering, Chung-Ang University)
  • Received : 2021.09.30
  • Accepted : 2021.12.15
  • Published : 2022.03.20

Abstract

An auxiliary current control technique is presented to improve the unloading transient response of the buck converter in this paper. The proposed control minimizes the output voltage deviation with minimal efficiency degradation of the auxiliary buck/boost converter. The parasitic components of the output capacitor and load are analyzed to estimate their effect on the load transient response. An implementation of the proposed control circuit was realized by discrete analog integrated circuits, such as operational amplifiers, comparators, logic gates, and their peripheral passive components. The performance and feasibility were experimentally verified by a 15-3.3 V and 400-kHz prototype buck converter applying the proposed control circuit.

Keywords

Acknowledgement

This research was supported by the Chung-Ang University Research Scholarship Grants in 2018 and National Research Foundation of Korea through Energy Cloud R&D Program funded by the Ministry of Science and ICT (2019M3F2A1073313).

References

  1. Meyer, E., Zhang, Z., Liu, Y.-F.: An optimal control method for buck converters using a practical capacitor charge balance technique. IEEE Trans. Power Electron. 23(4), 1802-1812 (2008) https://doi.org/10.1109/TPEL.2008.925201
  2. Qahouq, J.A.A., Rahman, O.A., Huang, L., Batarseh, I.: On load adaptive control of voltage regulators for power managed loads: control schemes to improve converter efficiency and performance. IEEE Trans. Power Electron. 22(5), 1806-1819 (2007) https://doi.org/10.1109/TPEL.2007.904232
  3. Kapat, S., Krein, P.T.: Formulation of PID control for DC-DC converters based on capacitor current: a geometric context. IEEE Trans. Power Electron. 27(3), 1424-1432 (2012) https://doi.org/10.1109/TPEL.2011.2164423
  4. Lu, W., Li, S., Yang, Y., Zhao, Z., Iu, H.H.-C.: Constant-frequency capacitor current hysteresis control of buck converter using reconstructed ideal-capacitor voltage. IEEE Trans. Ind. Electron. 66(10), 7916-7926 (2019) https://doi.org/10.1109/tie.2018.2880696
  5. Redl, R., Sun, J.: Ripple-based control of switching regulators-an overview. IEEE Trans. Power Electron. 24(12), 2669-2680 (2009) https://doi.org/10.1109/TPEL.2009.2032657
  6. Yao, K., Ren, Y., Lee, F.C.: Critical bandwidth for the load transient response of voltage regulator modules. IEEE Trans. Power Electron. 19(6), 1454-1461 (2004) https://doi.org/10.1109/TPEL.2004.838519
  7. Chen, W.-C., Wang, C.-S., Su, Y.-P., Lee, Y.-H., Lin, C.-C., Chen, K.-H., Du, M.-J.: Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for buck converter with multilayer ceramic capacitors. IEEE Trans. Power Electron. 28(5), 2366-2376 (2013) https://doi.org/10.1109/TPEL.2012.2215886
  8. Zhao, Z., Lu, W., Davari, P., Du, X., Iu, H.H.C., Blaabjerg, F.: An online parameters monitoring method for output capacitor of buck converter based on large-signal load transient trajectory analysis. IEEE J. Emerg. Sel. Top. Power. Electron. 9(4), 4004-4015 (2021) https://doi.org/10.1109/JESTPE.2020.2964068
  9. Lim, S., Fan, J., Huang, A.Q.: Transient-voltage-clamp circuit design based on constant load line impedance for voltage regulator module. IEEE Trans. Ind. Electron. 57(12), 4085-4094 (2010) https://doi.org/10.1109/TIE.2010.2042419
  10. Svikovic, V., Cortes, J.J., Alou, P., Oliver, J.A., Garcia, O., Cobos, J.A.: Multiphase current-controlled buck converter with energy recycling output impedance correction circuit (OICC). IEEE Trans. Power Electron. 30(9), 5207-5222 (2015) https://doi.org/10.1109/TPEL.2014.2362011
  11. Kirshenboim, O., Cervera, A., Peretz, M.M.: Improving loading and unloading transient response of a voltage regulator module using a load-side auxiliary gyrator circuit. IEEE Trans. Power Electron. 32(3), 1996-2007 (2017) https://doi.org/10.1109/TPEL.2016.2564698
  12. Singh, R.P., Khambadkone, A.M.: A buck-derived topology with improved step-down transient performance. IEEE Trans. Power Electron. 23(6), 2855-2866 (2008) https://doi.org/10.1109/TPEL.2008.2005383
  13. Zhao, Z., Lu, W., Ma, J., Li, S., Zhou, L.: Fast unloading transient recovery of buck converters using series-inductor auxiliary circuit based sequence switching control. In: IEEE Int. Power Electron. Appl. Conf. Expo. (PEAC), pp. 1-5 (2018)
  14. Kim, D., Hong, M., Baek, J., Lee, J., Shin, J., Shin, J.-W.: Soft-switching auxiliary current control for improving load transient response of buck converter. IEEE Trans. Power Electron. 36(3), 2488-2494 (2021) https://doi.org/10.1109/tpel.2020.3016960
  15. Kim, D., Shin, J.-W.: Dynamic response of buck converter with auxiliary current control: analysis and design of practical implementation. IEEE Trans. Power Electron. 36(12), 13917-13929 (2021) https://doi.org/10.1109/TPEL.2021.3087607
  16. Senanayake, T., Ninomiya, T.: An improved topology of inductor-switching DC-DC converter. IEEE Trans. Ind. Electron. 52(3), 869-878 (2005) https://doi.org/10.1109/TIE.2005.847572