Acknowledgement
This research was supported by the Chung-Ang University Research Scholarship Grants in 2018 and National Research Foundation of Korea through Energy Cloud R&D Program funded by the Ministry of Science and ICT (2019M3F2A1073313).
References
- Meyer, E., Zhang, Z., Liu, Y.-F.: An optimal control method for buck converters using a practical capacitor charge balance technique. IEEE Trans. Power Electron. 23(4), 1802-1812 (2008) https://doi.org/10.1109/TPEL.2008.925201
- Qahouq, J.A.A., Rahman, O.A., Huang, L., Batarseh, I.: On load adaptive control of voltage regulators for power managed loads: control schemes to improve converter efficiency and performance. IEEE Trans. Power Electron. 22(5), 1806-1819 (2007) https://doi.org/10.1109/TPEL.2007.904232
- Kapat, S., Krein, P.T.: Formulation of PID control for DC-DC converters based on capacitor current: a geometric context. IEEE Trans. Power Electron. 27(3), 1424-1432 (2012) https://doi.org/10.1109/TPEL.2011.2164423
- Lu, W., Li, S., Yang, Y., Zhao, Z., Iu, H.H.-C.: Constant-frequency capacitor current hysteresis control of buck converter using reconstructed ideal-capacitor voltage. IEEE Trans. Ind. Electron. 66(10), 7916-7926 (2019) https://doi.org/10.1109/tie.2018.2880696
- Redl, R., Sun, J.: Ripple-based control of switching regulators-an overview. IEEE Trans. Power Electron. 24(12), 2669-2680 (2009) https://doi.org/10.1109/TPEL.2009.2032657
- Yao, K., Ren, Y., Lee, F.C.: Critical bandwidth for the load transient response of voltage regulator modules. IEEE Trans. Power Electron. 19(6), 1454-1461 (2004) https://doi.org/10.1109/TPEL.2004.838519
- Chen, W.-C., Wang, C.-S., Su, Y.-P., Lee, Y.-H., Lin, C.-C., Chen, K.-H., Du, M.-J.: Reduction of equivalent series inductor effect in delay-ripple reshaped constant on-time control for buck converter with multilayer ceramic capacitors. IEEE Trans. Power Electron. 28(5), 2366-2376 (2013) https://doi.org/10.1109/TPEL.2012.2215886
- Zhao, Z., Lu, W., Davari, P., Du, X., Iu, H.H.C., Blaabjerg, F.: An online parameters monitoring method for output capacitor of buck converter based on large-signal load transient trajectory analysis. IEEE J. Emerg. Sel. Top. Power. Electron. 9(4), 4004-4015 (2021) https://doi.org/10.1109/JESTPE.2020.2964068
- Lim, S., Fan, J., Huang, A.Q.: Transient-voltage-clamp circuit design based on constant load line impedance for voltage regulator module. IEEE Trans. Ind. Electron. 57(12), 4085-4094 (2010) https://doi.org/10.1109/TIE.2010.2042419
- Svikovic, V., Cortes, J.J., Alou, P., Oliver, J.A., Garcia, O., Cobos, J.A.: Multiphase current-controlled buck converter with energy recycling output impedance correction circuit (OICC). IEEE Trans. Power Electron. 30(9), 5207-5222 (2015) https://doi.org/10.1109/TPEL.2014.2362011
- Kirshenboim, O., Cervera, A., Peretz, M.M.: Improving loading and unloading transient response of a voltage regulator module using a load-side auxiliary gyrator circuit. IEEE Trans. Power Electron. 32(3), 1996-2007 (2017) https://doi.org/10.1109/TPEL.2016.2564698
- Singh, R.P., Khambadkone, A.M.: A buck-derived topology with improved step-down transient performance. IEEE Trans. Power Electron. 23(6), 2855-2866 (2008) https://doi.org/10.1109/TPEL.2008.2005383
- Zhao, Z., Lu, W., Ma, J., Li, S., Zhou, L.: Fast unloading transient recovery of buck converters using series-inductor auxiliary circuit based sequence switching control. In: IEEE Int. Power Electron. Appl. Conf. Expo. (PEAC), pp. 1-5 (2018)
- Kim, D., Hong, M., Baek, J., Lee, J., Shin, J., Shin, J.-W.: Soft-switching auxiliary current control for improving load transient response of buck converter. IEEE Trans. Power Electron. 36(3), 2488-2494 (2021) https://doi.org/10.1109/tpel.2020.3016960
- Kim, D., Shin, J.-W.: Dynamic response of buck converter with auxiliary current control: analysis and design of practical implementation. IEEE Trans. Power Electron. 36(12), 13917-13929 (2021) https://doi.org/10.1109/TPEL.2021.3087607
- Senanayake, T., Ninomiya, T.: An improved topology of inductor-switching DC-DC converter. IEEE Trans. Ind. Electron. 52(3), 869-878 (2005) https://doi.org/10.1109/TIE.2005.847572