DOI QR코드

DOI QR Code

Robust finite-control-set model predictive control for voltage source inverters against LC-filter parameter mismatch and variation

  • Received : 2021.09.11
  • Accepted : 2021.12.29
  • Published : 2022.03.20

Abstract

This paper proposes a robust finite-control-set model predictive control (FCS-MPC) method for a two-level voltage source inverter (VSI) against LC-filter parameter mismatch and variation. Unlike conventional FCS-MPCs, the predictive schemes for inductor current and capacitor voltage are treated separately to avoid filter-inductance dependency. Consequently, the capacitor voltage is easily predicted from a C-filter model instead of the typical LC-filter model used in conventional FCS-MPCs. In addition, the filter capacitance is the only parameter that affects the control performance related to the LC-filter parameter mismatch. Furthermore, the control performance against LC-filter parameter mismatch is guaranteed, since the capacitance is accurately identified by means of least-squares minimization. Experimental results show that the proposed FCS-MPC achieves robustness against LC-filter parameter mismatch and high control performance when compared to the conventional FCS-MPC.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation (Grant number: R20XO02-33). This work was supported the NRF of Korea Grant under Grant NRF-2018R1D1A1A09081779.

References

  1. Blaabjerg, F., Teodorescu, R., Liserre, M., Timbus, A.V.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398-1409 (2006) https://doi.org/10.1109/TIE.2006.881997
  2. Borup, U., Enjeti, P.N., Blaabjerg, F.: A new space-vector-based control method for UPS systems powering nonlinear and unbalanced loads. IEEE Trans. Ind. Appl. 37(6), 1864-1870 (2001) https://doi.org/10.1109/28.968202
  3. Vazquez, S., et al.: Model predictive control: a review of its applications in power electronics. IEEE Ind. Electron. Mag. 8(1), 16-31 (2014) https://doi.org/10.1109/MIE.2013.2290138
  4. Cortes, P., Ortiz, G., Yuz, J.I., Rodriguez, J., Vazquez, S., Franquelo, L.G.: Model predictive control of an inverter with output LC filter for UPS applications. IEEE Trans. Ind. Electron. 56(6), 1875-1883 (2009) https://doi.org/10.1109/TIE.2009.2015750
  5. Nauman, M., Hasan, A.: Efficient implicit model-predictive control of a three-phase inverter with an output LC filter. IEEE Trans. Power Electron. 31(9), 6075-6078 (2016). https://doi.org/10.1109/TPEL.2016.2535263
  6. Cortes, P., Rodriguez, J., Vazquez, S., Franquelo, L.G.: Predictive control of a three-phase UPS inverter using two steps prediction horizon. In: Proceedings of the IEEE International Conference on Industrial Technology, pp. 1283-1288 (2010)
  7. Kim, D.E., Lee, D.C.: Feedback linearization control of three-phase UPS inverter systems. IEEE Trans. Ind. Electron. 57(3), 963-968 (2010) https://doi.org/10.1109/TIE.2009.2038404
  8. Escobar, G., Valdez, A.A., Leyva-Ramos, J., Mattavelli, P.: Repetitive-based controller for a UPS inverter to compensate unbalance and harmonic distortion. IEEE Trans. Ind. Electron. 54(1), 504-510 (2007) https://doi.org/10.1109/TIE.2006.888803
  9. Kukrer, O.: Deadbeat control of a three-phase inverter with an output LC filter. IEEE Trans. Power Electron. 11(1), 16-23 (1996) https://doi.org/10.1109/63.484412
  10. Mattavelli, P.: An improved deadbeat control for UPS using disturbance observers. IEEE Trans. Ind. Electron. 52(1), 206-212 (2005) https://doi.org/10.1109/TIE.2004.837912
  11. Komurcugil, H.: Rotating-sliding-line-based sliding-mode control for single-phase UPS inverters. IEEE Trans. Ind. Electron. 59(10), 3719-3726 (2012) https://doi.org/10.1109/TIE.2011.2159354
  12. Hu, J., Zhu, J., Lei, G., Platt, G., Dorrell, D.G.: Multi-objective model-predictive control for high-power converters. IEEE Trans. Energy Convers. 28(3), 652-663 (2013) https://doi.org/10.1109/TEC.2013.2270557
  13. Karamanakos, P., Geyer, T.: Guidelines for the design of finite control set model predictive controllers. IEEE Trans. Power Electron. 35(7), 7434-7450 (2020). https://doi.org/10.1109/TPEL.2019.2954357
  14. Hamouda, N., Babes, B., Kahla, S., Souf, Y., Petzoldt, J., Ellinger, T.: Predictive control of a grid connected PV system incorporating active power filter functionalities. In: 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), pp. 1-6 (2019). https://doi.org/10.1109/ICSRESA49121.2019.9182655
  15. Aissa, O., Moulahoum, S., Colak, I., et al.: Analysis and experimental evaluation of shunt active power filter for power quality improvement based on predictive direct power control. Environ. Sci. Pollut. Res. 25, 24548-24560 (2018). https://doi.org/10.1007/s11356-017-0396-1
  16. Aissa, O., Moulahoum, S., Colak, I., Babes, B., Kabache, N.: Analysis, design and real-time implementation of shunt active power filter for power quality improvement based on predictive direct power control. In: 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pp. 79-84 (2016). https://doi.org/10.1109/ICRERA.2016.7884400
  17. Babes, B., Rahmani, L., Chaoui, A., Hamouda, N.: Design and experimental validation of a digital predictive controller for variable-speed wind turbine systems. J. Power Electron. 17(1), 232-241 (2017) https://doi.org/10.6113/JPE.2017.17.1.232
  18. Hamouda, N., Babes, B., Kahla, S., Souf, Y.: Real time implementation of grid connected wind energy systems: predictive current controller. In: 2019 1st International Conference on Sustainable Renewable Energy Systems and Applications (ICSRESA), pp. 1-6 (2019). https://doi.org/10.1109/ICSRESA49121.2019.9182526
  19. Rodriguez, J., et al.: State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 9(2), 1003-1016 (2013) https://doi.org/10.1109/TII.2012.2221469
  20. Young, H.A., Perez, M.A., Rodriguez, J.: Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter. IEEE Trans. Ind. Electron. 63(5), 3100-3107 (2016) https://doi.org/10.1109/TIE.2016.2515072
  21. Kwak, S., Moon, U.C., Park, J.C.: Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance. IEEE Trans. Power Electron. 29(11), 6178-6187 (2014) https://doi.org/10.1109/TPEL.2014.2298041
  22. Zhang, Y., Jiao, J., Liu, J.: Direct power control of PWM rectifiers with online inductance identification under unbalanced and distorted network conditions. IEEE Trans. Power Electron. 34(12), 12524-12537 (2019) https://doi.org/10.1109/tpel.2019.2908908
  23. Siami, M., Khaburi, D.A., Abbaszadeh, A., Rodriguez, J.: Robustness improvement of predictive current control using prediction error correction for permanent-magnet synchronous machines. IEEE Trans. Ind. Electron. 63(6), 3458-3466 (2016) https://doi.org/10.1109/TIE.2016.2521734
  24. Siami, M., Khaburi, D.A., Rodriguez, J.: Torque ripple reduction of predictive torque control for PMSM drives with parameter mismatch. IEEE Trans. Power Electron. 32(9), 7160-7168 (2017) https://doi.org/10.1109/TPEL.2016.2630274
  25. Yang, H., Zhang, Y., Liang, J., Liu, J., Zhang, N., Walker, P.D.: Robust deadbeat predictive power control with a discrete-time disturbance observer for PWM rectifiers under unbalanced grid conditions. IEEE Trans. Power Electron. 34(1), 287-300 (2018) https://doi.org/10.1109/TPEL.2018.2816742
  26. He, L., Wang, F., Wang, J., Rodriguez, J.: Zynq implemented Luenberger disturbance observer based predictive control scheme for PMSM drives. IEEE Trans. Power Electron. 35(2), 1770-1778 (2020) https://doi.org/10.1109/tpel.2019.2920439
  27. Lin, C.K., Liu, T.H., Te Yu, J., Fu, L.C., Hsiao, C.F.: Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique. IEEE Trans. Ind. Electron. 61(2), 667-681 (2014) https://doi.org/10.1109/TIE.2013.2253065
  28. Lai, Y.S., Lin, C.K., Chuang, F.P., Te Yu, J.: Model-free predictive current control for three-phase AC/DC converters. IET Electr. Power Appl. 11(5), 729-739 (2017) https://doi.org/10.1049/iet-epa.2016.0302
  29. Kim, S.-K., Park, C.R., Yoon, T.-W., Lee, Y.I.: Disturbance-observer-based model predictive control for output voltage regulation of three-phase inverter for uninterruptible-power-supply applications. Eur J Control 23, 71-83 (2015) https://doi.org/10.1016/j.ejcon.2015.02.004
  30. Nguyen, H.T., Jung, J.W.: Disturbance-rejection-based model predictive control: flexible-mode design with a modulator for three-phase inverters. IEEE Trans. Ind. Electron. 65(4), 2893-2903 (2018) https://doi.org/10.1109/TIE.2017.2758723
  31. Nguyen, H.T., Kim, J., Jung, J.W.: Improved model predictive control by robust prediction and stability-constrained finite states for three-phase inverters with an output LC filter. IEEE Access 7, 12673-12685 (2019) https://doi.org/10.1109/access.2019.2891535
  32. Dragicevic, T.: Model predictive control of power converters for robust and fast operation of AC microgrids. IEEE Trans. Power Electron. 33(7), 6304-6317 (2018). https://doi.org/10.1109/TPEL.2017.2744986
  33. Young, H.A., Marin, V.A., Pesce, C., Rodriguez, J.: Simple finite-control-set model predictive control of grid-forming inverters with LCL filters. IEEE Access 8, 81246-81256 (2020). https://doi.org/10.1109/ACCESS.2020.2991396
  34. Cortes, P., Rodriguez, J., Silva, C., Flores, A.: Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans. Ind. Electron. 59(2), 1323-1325 (2012) https://doi.org/10.1109/TIE.2011.2157284
  35. Karamanakos, P., Geyer, T., Kennel, R.: On the choice of norm in finite control set model predictive control. IEEE Trans. Power Electron. 33(8), 7105-7117 (2018). https://doi.org/10.1109/TPEL.2017.2756092
  36. Wilson, P.: The Circuit Designer's Companion, 4th edn. Newnes, Burlington (2017)
  37. Razali, A.M., Rahman, M.A., George, G., Rahim, N.A.: Analysis and design of new switching lookup table for virtual flux direct power control of grid-connected three-phase PWM AC-DC converter. IEEE Trans. Ind. Appl. 51(2), 1189-1200 (2015). https://doi.org/10.1109/TIA.2014.2344503
  38. Chong, E.K.P., Zak, S.H.: An Introduction to Optimization, 2nd edn. Wiley, New York (2001)
  39. Tinazzi, F., Carlet, P.G., Bolognani, S., Zigliotto, M.: Motor parameter-free predictive current control of synchronous motors by recursive least-square self-commissioning model. IEEE Trans. Industr. Electron. 67(11), 9093-9100 (2020). https://doi.org/10.1109/TIE.2019.2956407
  40. Sun, X., Ji, J., Ren, B., Xie, C., Yan, D.: Adaptive forgetting factor recursive least square algorithm for online identification of equivalent circuit model parameters of a lithium-ion battery. Energies 12, 2242 (2019). https://doi.org/10.3390/en12122242
  41. Pichan, M., Rastegar, H., Monfared, M.: Deadbeat control of the stand-alone four-leg inverter considering the effect of the neutral line inductor. IEEE Trans. Ind. Electron. 64(4), 2592-2601 (2017) https://doi.org/10.1109/TIE.2016.2631459