DOI QR코드

DOI QR Code

Performance for simple combinations of univariate forecasting models

단변량 시계열 모형들의 단순 결합의 예측 성능

  • 이선홍 (중앙대학교 응용통계학과) ;
  • 성병찬 (중앙대학교 응용통계학과)
  • Received : 2022.02.22
  • Accepted : 2022.02.25
  • Published : 2022.06.30

Abstract

In this paper, we consider univariate time series models that are well known in the field of forecasting and we study on forecasting performance for their simple combinations. The univariate time series models include exponential smoothing methods and ARIMA (autoregressive integrated moving average) models, their extended models, and non-seasonal and seasonal random walk models, which is frequently used as benchmark models for forecasting. The median and mean are simply used for the combination method, and the data set used for performance evaluation is M3-competition data composed of 3,003 various time series data. As results of evaluating the performance by sMAPE (symmetric mean absolute percentage error) and MASE (mean absolute scaled error), we assure that the simple combinations of the univariate models perform very well in the M3-competition dataset.

본 논문에서는 시계열 예측 분야에서 잘 알려져 있는 단변량 시계열 모형들을 이용하여, 그들의 단순 조합이 어떤 예측력을 보여주는지 연구한다. 고려된 단변량 시계열 모형으로는, 지수평활 및 ARIMA(autoregressive integrated moving average) 모형들과 그들의 확장된 형태인 모형들 그리고 예측의 벤치마크 모형으로 자주 사용되는 비계절 및 계절 랜덤워크 모형이다. 단순 조합의 방법은 중앙값과 평균을 이용하였으며, 검증을 위하여 사용된 데이터셋은 3,003개의 시계열 자료로 구성된 M3-competition 자료이다. 예측 성능을 sMAPE(symmetric mean absolute percentage error)와 MASE(mean absolute scaled error)로 평가한 결과, 단변량 시계열 모형들의 단순 조합이 아주 우수한 예측력을 가지고 있음을 확인하였다.

Keywords

Acknowledgement

이 논문은 2020년도 중앙대학교 연구장학기금 지원에 의한 것임.

References

  1. Assimakopoulos V and Nikolopoulos K (2000). The Theta model: a decomposition approach to forecasting, International Journal of Forecasting, 16(4), 521-530. https://doi.org/10.1016/S0169-2070(00)00066-2
  2. Box GEP and Jenkins GM (1970). Time series analysis: forecasting and control, Holden-Day, San Francisco.
  3. Brown RG (1959). Statistical forecasting for inventory control, McGraw/Hill.
  4. Commandeur JJF and Koopman SJ (2007). Introduction to State Space Time Series Analysis, Oxford University Press.
  5. Fiorucci JA, Pellegrini TR, Louzada F, Petropoulos F, and Koehler AB (2016). Models for optimising the theta method and their relationship to state space models. International Journal of Forecasting, 32(4), 1151-1161. https://doi.org/10.1016/j.ijforecast.2016.02.005
  6. Holt CE (1957). Forecasting seasonals and trends by exponentially weighted averages, O.N.R. Memorandum No. 52. Carnegie Institute of Technology, Pittsburgh USA.
  7. Hyndman RJ and Athanasopoulos G (2018). Forecasting: principles and practice, 2nd Ed., OTexts.
  8. Hyndman RJ and Koehler AB (2006). Another look at measures of forecast accuracy, International Journal of Forecasting, 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001
  9. Kolassa S (2011). Combining exponential smoothing forecasts using Akaike weights, International Journal of Forecasting, 27, 238-251. https://doi.org/10.1016/j.ijforecast.2010.04.006
  10. Lichtendahl KC, Grushka-Cockayne Y, and Winkler RL (2013). Is it better to average probabilities or quantiles? Management Science, 59(7), 1594-1611. https://doi.org/10.1287/mnsc.1120.1667
  11. Livera AMD, Hyndman RJ, and Snyder RD (2011). Forecasting time series with complex seasonal patterns using exponential smoothing, Journal of the American Statistical Association, 106(496), 1513-1527. https://doi.org/10.1198/jasa.2011.tm09771
  12. Makridakis S (1993). Accuracy measures: theoretical and practical concerns, International Journal of Forecasting, 9(4), 527-529. https://doi.org/10.1016/0169-2070(93)90079-3
  13. Makridakis S and Hibon M (2000). The M3-Competition: results, conclusions and implications, International Journal of Forecasting, 16(4), 451-476. https://doi.org/10.1016/S0169-2070(00)00057-1
  14. Petropoulos F and Svetunkov I (2020). A simple combination of univariate models, International Journal of Forecasting, 36(1), 110-115. https://doi.org/10.1016/j.ijforecast.2019.01.006
  15. Svetunkov I and Kourentzes N (2018). Complex exponential smoothing for seasonal time series, Working Paper of Department of Management Science, Lancaster University, 2018:1, 1-20.