DOI QR코드

DOI QR Code

Comparison of dimensional accuracy between direct-printed and thermoformed aligners

  • 투고 : 2021.10.26
  • 심사 : 2022.01.19
  • 발행 : 2022.07.25

초록

Objective: The purpose of this study was to evaluate and compare the dimensional accuracy between thermoformed and direct-printed aligners. Methods: Three types of aligners were manufactured from the same reference standard tessellation language (STL) file: thermoformed aligners were manufactured using Zendura FLXTM (n = 12) and Essix ACETM (n = 12), and direct-printed aligners were printed using Tera HarzTM TC-85DAP 3D Printer UV Resin (n = 12). The teeth were not manipulated with any tooth-moving software in this study. The samples were sprayed with an opaque scanning spray, scanned, imported to Geomagic® Control XTM metrology software, and superimposed on the reference STL file by using the best-fit alignment algorithm. Distances between the aligner meshes and the reference STL file were measured at nine anatomical landmarks. Results: Mean absolute discrepancies in the Zendura FLXTM aligners ranged from 0.076 ± 0.057 mm to 0.260 ± 0.089 mm and those in the Essix ACETM aligners ranged from 0.188 ± 0.271 mm to 0.457 ± 0.350 mm, while in the direct-printed aligners, they ranged from 0.079 ± 0.054 mm to 0.224 ± 0.041 mm. Root mean square values, representing the overall trueness, ranged from 0.209 ± 0.094 mm for Essix ACETM, 0.188 ± 0.074 mm for Zendura FLXTM, and 0.140 ± 0.020 mm for the direct-printed aligners. Conclusions: This study showed greater trueness and precision of direct-printed aligners than thermoformed aligners.

키워드

참고문헌

  1. Rosvall MD, Fields HW, Ziuchkovski J, Rosenstiel SF, Johnston WM. Attractiveness, acceptability, and value of orthodontic appliances. Am J Orthod Dentofacial Orthop 2009;135:276.e1-12; discussion 276-7. https://doi.org/10.1016/j.ajodo.2008.07.011
  2. Weir T. Clear aligners in orthodontic treatment. Aust Dent J 2017;62 Suppl 1:58-62. https://doi.org/10.1111/adj.12480
  3. Jindal P, Juneja M, Siena FL, Bajaj D, Breedon P. Mechanical and geometric properties of thermoformed and 3D printed clear dental aligners. Am J Orthod Dentofacial Orthop 2019;156:694-701. https://doi.org/10.1016/j.ajodo.2019.05.012
  4. Edelmann A, English JD, Chen SJ, Kasper FK. Analysis of the thickness of 3-dimensional-printed orthodontic aligners. Am J Orthod Dentofacial Orthop 2020;158:e91-8. https://doi.org/10.1016/j.ajodo.2020.07.029
  5. Wan Hassan WN, Yusoff Y, Mardi NA. Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding. Am J Orthod Dentofacial Orthop 2017;151:209-18. https://doi.org/10.1016/j.ajodo.2016.08.019
  6. Mantovani E, Castroflorio E, Rossini G, Garino F, Cugliari G, Deregibus A, et al. Scanning electron microscopy evaluation of aligner fit on teeth. Angle Orthod 2018;88:596-601. https://doi.org/10.2319/120417-827.1
  7. Lombardo L, Palone M, Longo M, Arveda N, Nacucchi M, De Pascalis F, et al. MicroCT X-ray comparison of aligner gap and thickness of six brands of aligners: an in-vitro study. Prog Orthod 2020;21:12. https://doi.org/10.1186/s40510-020-00312-w
  8. Chisari JR, McGorray SP, Nair M, Wheeler TT. Variables affecting orthodontic tooth movement with clear aligners. Am J Orthod Dentofacial Orthop 2014;145(4 Suppl):S82-91. https://doi.org/10.1016/j.ajodo.2013.10.022
  9. Bowman SJ. Improving the predictability of clear aligners. Semin Orthod 2017;23:65-75. https://doi.org/10.1053/j.sodo.2016.10.005
  10. Holm C, Tidehag P, Tillberg A, Molin M. Longevity and quality of FPDs: a retrospective study of restorations 30, 20, and 10 years after insertion. Int J Prosthodont 2003;16:283-9.
  11. Johal A, Sharma NR, McLaughlin K, Zou LF. The reliability of thermoform retainers: a laboratory-based comparative study. Eur J Orthod 2015;37:503-7. https://doi.org/10.1093/ejo/cju075
  12. Cole D, Bencharit S, Carrico CK, Arias A, Tufekci E. Evaluation of fit for 3D-printed retainers compared with thermoform retainers. Am J Orthod Dentofacial Orthop 2019;155:592-9. https://doi.org/10.1016/j.ajodo.2018.09.011
  13. Kim SY, Shin YS, Jung HD, Hwang CJ, Baik HS, Cha JY. Precision and trueness of dental models manufactured with different 3-dimensional printing techniques. Am J Orthod Dentofacial Orthop 2018;153:144-53. https://doi.org/10.1016/j.ajodo.2017.05.025
  14. Cho JH, Yoon HI, Han JS, Kim DJ. Trueness of the inner surface of monolithic crowns fabricated by milling of a fully sintered (Y, Nb)-TZP block in chairside CAD-CAM system for single-visit dentistry. Materials (Basel) 2019;12:3253. https://doi.org/10.3390/ma12193253
  15. Peters MC, Delong R, Pintado MR, Pallesen U, Qvist V, Douglas WH. Comparison of two measurement techniques for clinical wear. J Dent 1999;27:479-85. https://doi.org/10.1016/S0300-5712(99)00027-5
  16. Yamada J, Maeda Y. Thermoforming process for fabricating oral appliances: influence of heating and pressure application timing on formability. J Prosthodont 2007;16:452-6. https://doi.org/10.1111/j.1532-849x.2007.00222.x
  17. Nakano H, Kato R, Kakami C, Okamoto H, Mamada K, Maki K. Development of biocompatible resins for 3D printing of direct aligners. J Photopolym Sci Technol 2019;32:209-16. https://doi.org/10.2494/photopolymer.32.209
  18. Zinelis S, Panayi N, Polychronis G, Papageorgiou SN, Eliades T. Comparative analysis of mechanical properties of orthodontic aligners produced by different contemporary 3D printers. Orthod Craniofac Res 2021. doi: 10.1111/ocr.12537. [Epub ahead of print]
  19. Unkovskiy A, Schmidt F, Beuer F, Li P, Spintzyk S, Kraemer Fernandez P. Stereolithography vs. direct light processing for rapid manufacturing of complete denture bases: an in vitro accuracy analysis. J Clin Med 2021;10:1070. https://doi.org/10.3390/jcm10051070
  20. Su TS, Sun J. Comparison of repeatability between intraoral digital scanner and extraoral digital scanner: an in-vitro study. J Prosthodont Res 2015;59: 236-42. https://doi.org/10.1016/j.jpor.2015.06.002
  21. Park ME, Shin SY. Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. J Prosthet Dent 2018;119:861.e1-861.e7.
  22. Ryokawa H, Miyazaki Y, Fujishima A, Miyazaki T, Maki K. The mechanical properties of dental thermoplastic materials in a simulated intraoral environment. Orthod Waves 2006;65:64-72. https://doi.org/10.1016/j.odw.2006.03.003
  23. Schuster S, Eliades G, Zinelis S, Eliades T, Bradley TG. Structural conformation and leaching from in vitro aged and retrieved Invisalign appliances. Am J Orthod Dentofacial Orthop 2004;126:725-8. https://doi.org/10.1016/j.ajodo.2004.04.021
  24. Eliades T, Pratsinis H, Athanasiou AE, Eliades G, Kletsas D. Cytotoxicity and estrogenicity of Invisalign appliances. Am J Orthod Dentofacial Orthop 2009;136:100-3. https://doi.org/10.1016/j.ajodo.2009.03.006
  25. Brezniak N. The clear plastic appliance: a biomechanical point of view. Angle Orthod 2008;78:381-2. https://doi.org/10.2319/0003-3219(2008)078[0381:TCPA]2.0.CO;2
  26. Hahn W, Dathe H, Fialka-Fricke J, Fricke-Zech S, Zapf A, Kubein-Meesenburg D, et al. Influence of thermoplastic appliance thickness on the magnitude of force delivered to a maxillary central incisor during tipping. Am J Orthod Dentofacial Orthop 2009;136:12.e1-7; discussion 12-3. https://doi.org/10.1016/j.ajodo.2009.03.004
  27. Wheeler T. Invisalign clinical trials needed. Am J Orthod Dentofacial Orthop 2005;127:527. https://doi.org/10.1016/j.ajodo.2005.03.006
  28. Qi HJ, Boyce MC. Stress-strain behavior of thermoplastic polyurethanes. Mech Mater 2005;37:817-39. https://doi.org/10.1016/j.mechmat.2004.08.001
  29. Lombardo L, Arreghini A, Maccarrone R, Bianchi A, Scalia S, Siciliani G. Optical properties of orthodontic aligners--spectrophotometry analysis of three types before and after aging. Prog Orthod 2015;16:41. https://doi.org/10.1186/s40510-015-0111-z
  30. Kim KY, Ahn HW, Kim SH, Nelson G. Effects of a new type of clear overlay retainer on occlusal contacts. Korean J Orthod 2017;47:207-12. https://doi.org/10.4041/kjod.2017.47.3.207