DOI QR코드

DOI QR Code

Dual-Mode Framework for Space Object Collision Risk Assessment

우주 물체 충돌 위험 분석을 위한 이중 모드 프레임워크

  • Kim, Siwoo (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Jinsung (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Choi, Eun-Jung (Korea Astronomy and Space Science Institute (KASI)) ;
  • Cho, Sungki (Korea Astronomy and Space Science Institute (KASI)) ;
  • Ahn, Jaemyung (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2022.01.24
  • Accepted : 2022.02.11
  • Published : 2022.02.28

Abstract

Recently, the number of space objects around the Earth has increased rapidly, necessitating systematic space risk management. This paper proposes a dual-mode framework for assessing the risk of collision between space objects. The proposed framework consists of microscopic and macroscopic modes. The former focuses on one-to-one collision events, and the latter assesses the overall collision risk inside a cell located in space. Two risk assessment case studies using the proposed two modes demonstrate the effectiveness of the proposed framework.

최근 지구 주변 우주 물체 수의 급격한 증가와 함께 우주 위험 대응 기술에 대한 중요성이 높아지고 있다. 본 연구에서는 우주 위험 중 하나인 우주 물체 간 충돌 위험을 분석하기 위한 방법론에 대해 기술하였다. 주어진 정보와 상황에 적합한 충돌 위험 정보를 도출하기 위해 일대일 충돌 사건에 초점을 맞춘 미시적 모드와, 관심 대상이 통과하는 공간에 초점을 맞춘 거시적 모드로 이루어진 이중 모드 프레임워크가 제안되었으며, 각 모드에 적합한 사례 연구를 통해 그 효용성을 검증하였다.

Keywords

Acknowledgement

본 연구는 한국천문연구원 '우주물체감시 관측인프라 기술개발(2021185405)'의 '우주물체 간 충돌확률 분석기법 연구'의 지원을 받아 수행되었습니다.

References

  1. Space-track.org, Satellite catalog statistics [Internet], viewed 2022 Jan 20, available from: https://space-track.org/#boxscore
  2. Oltrogge D, Space situational awareness: Key issues in an evolving landscape, in Hearing of the Committee on Science, Space, and Technology, Washington, DC, 11 Feb 2020.
  3. Contant-Jorgenson C, Lala P, Schrogl KU, The IAA cosmic study on space traffic management, Space Policy. 22, 283-288 (2006). https://doi.org/10.1016/j.spacepol.2006.08.004
  4. Choi E, Development of a software for re-entry prediction of space objects for space situational awareness, J. Space Technol. Appl. 1, 23-32 (2021). https://doi.org/10.52912/jsta.2021.1.1.23
  5. Foster JL, Estes HS, A Parametric Analysis of orbital Debris Collision Probability and Maneuver Rate for Space Vehicles (NASA, Houston, TX, 1992).
  6. Chan FK, Collision probability analyses for earth-orbiting satellites, Proceedings of the 7th International Space Conference of Pacific Basin Societies, Nagasaki, 15-18 Jul 1997.
  7. Patera RP, General method for calculating satellite collision probability, J. Guid. Control Dyn. 24, 716-722 (2001). https://doi.org/10.2514/2.4771
  8. Alfano S, A numerical implementation of spherical object collision probability, J. Astronaut. Sci. 53, 103-109 (2005). https://doi.org/10.1007/BF03546397
  9. Alfano S, Oltrogge D, Probability of collision: valuation, variability, visualization, and validity, Acta Astronaut. 148, 301-316 (2018). https://doi.org/10.1016/j.actaastro.2018.04.023
  10. Klinkrad H, Space Debris: Models and Risk Analysis (Springer, Berlin, 2006).
  11. NASA, CARA: Conjunction Assessment Risk Analysis (2022) [Internet], viewed 2022 Jan 20, available from: https://satellitesafety.gsfc.nasa.gov/cara.html
  12. Kim HD, Lee SC, Cho DH, Seong JD, Development of the KARI space debris collision risk management system (KARISMA), Int. J. Aeronaut. Space Sci. 19, 478-495 (2018). https://doi.org/10.1007/s42405-018-0018-2
  13. Hejduk MD, Satellite conjunction assessment risk analysis for "dilution region" events: issues and operational approaches, in Space Traffic Management Conference, Austin, TX, 26 Feb 2019.