과제정보
본 연구는 2021 달 착륙선 자기장 측정기 개발 NRF-2020M1A3B7109194 지원을 받아 수행되었습니다.
참고문헌
- Heidt H, Puig-Suari J, Moore A, Nakasuka S, Twiggs R, CubeSat: A new generation of picosatellite for education and industry low-cost space experimentation, in 14thAIAA/USU Conference on Small Satellites, Logan, UT, 21-24 Aug 2000.
- National Academies of Sciences, Engineering, and Medicine, Achieving Science with CubeSats: Thinking inside the Box (Academic Press, Washington, DC, 2016).
- Kulu E, Nanosatellite & CubeSat database (2022) [Internet], viewed 2022 Feb 2, available from: https://www.nanosats.eu/database
- Archer MO, Horbury TS, Brown P, Eastwood JP, Oddy TM, et al., The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer, Ann. Geophys. 33, 725-735 (2015). https://doi.org/10.5194/angeo-33-725-2015
- Lee J, Lee S, Lee JK, Lee H, Shin J, et al., Development of flight software for SIGMA CubeSat, J. Korean Soc. Aeronaut. Space Sci. 44, 363-372 (2016). https://doi.org/10.5139/jksas.2016.44.4.363
- Kang S, Song Y, Park SY, Nanosat formation flying design for SNIPE mission, J. Astron. Space Sci. 37, 51-60 (2020). https://doi.org/10.5140/JASS.2020.37.1.51
- Steyn WH, Hashida Y, In-orbit attitude performance of the 3-axis stabilised SNAP-1 nanosatellite, in 15th Annual AIAA/USU Conference on Small Satellites, Logan, UT, 13-16 Aug 2001.
- Lassakeur A, Underwood C, Taylor B, Duke R, Magnetic cleanliness program on CubeSats and nanosatellites for improved attitude stability, J. Aeronaut. Space Technol. 13, 25-41 (2020). https://doi.org/10.1109/RAST.2019.8767816
- Lassakeur A, Underwood C, Taylor B, Enhanced attitude stability and control for CubeSats by real-time on-orbit determination of their dynamic magnetic moment, in 69th International Astronautical Congress (IAC), Bremen, 1-5 Oct 2018.
- Bleier T, Clarke P, Cutler J, DeMartini L, Dunson C, et al., QuakeSat lessons learned: Notes from the development of a triple cubesat (QuakeFinder, Palo Alto, CA, 2003).
- Eagleson S, Attitude determination and control, detailed design, test, and implementation for CanX-2 and preliminary design for CanX-3 and CanX-45, Master's Thesis, Canada Toronto University (2006).
- Li J, Post M, Wright T, Lee R, Design of attitude control systems for CubeSat-class nanosatellite, J. Control Sci. Eng. 2013, 657182 (2013). https://doi.org/10.1155/2013/657182
- Amin J, Lightsey EG, The design, assembly, and testing of magnetorquers for a 1U CubeSat mission, Georgia Institute of Technology, AE 8900 MS Special Problems Report (2019).
- Ortner M, Bandeira LGC, Magpylib: A free Python package for magnetic field computation, SoftwareX. 11, 100466 (2020). https://doi.org/10.1016/j.softx.2020.100466
- Park HH, Jin H, Kim TY, Kim KH, Lee HJ, et al., Analysis of the KPLO magnetic cleanliness for the KMAG instrument, Adv. Space Res. 69, 1198-1204 (2022). https://doi.org/10.1016/j.asr.2021.11.015
- CubeSatShop (2022) NCTR-M002 magnetorquer rod [Internet], viewed 2022 Jan 27, available from: https://www.cubesatshop.com/product/nctr-m002-magnetorquer-rod/
- NanoAvionics (2022) CubeSat reaction wheels control system SatBus 4RW0 [Internet], viewed 2022 Jan 27, available from: https://nanoavionics.com/cubesat-components/cubesat-reaction-wheels-control-system-satbus-4rw/