Acknowledgement
This work was supported by the Science and Technology Project of State Grid Heilongjiang Electric Power Company Limited (SGHLDK00DWJS2100088).
References
- Du, E., Zhang, N., Hodge, B., Wang, Q., Kang, C., Kroposki, B., Xia, Q.: The role of concentrating solar power toward high renewable energy penetrated power systems. IEEE Trans. Power Syst. 33(6), 6630-6641 (2018) https://doi.org/10.1109/tpwrs.2018.2834461
- Patel, R., Li, C., Meegahapola, L., McGrath, B., Yu, X.: Enhancing optimal automatic generation control in a multi-area power system with diverse energy resources. IEEE Trans. Power Syst. 34(5), 3465-3475 (2019) https://doi.org/10.1109/tpwrs.2019.2907614
- Sangwongwanich, A., Yang, Y., Blaabjerg, F.: High-performance constant power generation in grid-connected PV systems. IEEE Trans. Power Electron. 31(3), 1822-1825 (2016) https://doi.org/10.1109/TPEL.2015.2465151
- Villarreal-Ortiz, R.A., Hernandez-Angeles, M., Fuerte-Esquivel, C.R., Villanueva-Chavez, R.O.: Centroid PWM technique for inverter harmonics elimination. IEEE Trans. Power Deliv. 20(2), 1209-1210 (2005) https://doi.org/10.1109/TPWRD.2004.839738
- Albanna, A.Z., Hatziadoniu, C.J.: Harmonic Modeling of Hysteresis Inverters in Frequency Domain. IEEE Trans. Power Electron. 25(5), 1110-1114 (2010) https://doi.org/10.1109/TPEL.2009.2037500
- Arricibita, D., Sanchis, P., Gonzalez, R., Marroyo, L.: Impedance emulation for voltage harmonic compensation in PWM stand-alone inverters. IEEE Trans. Energy Convers. 32(4), 1335-1344 (2017) https://doi.org/10.1109/TEC.2017.2709078
- Kulothungan, G.S., Edpuganti, A., Rathore, A.K., Rodriguez, J., Srinivasan, D.: Hybrid SVM-SOPWM modulation of current-fed three-level inverter for high power application. IEEE Trans. Ind. Appl. 55(4), 4344-4358 (2019) https://doi.org/10.1109/tia.2019.2912967
- Gambhir, A., Mishra, S.K., Joshi, A.: Power frequency harmonic reduction and its redistribution for improved filter design in current-fed switched inverter. IEEE Trans. Ind. Electron. 66(6), 4319-4333 (2019) https://doi.org/10.1109/tie.2018.2860531
- IEEE Power and Energy Society: Recommended practice and requirements for harmonic control in electric power systems. In: IEEE Std 519-2014 (Revision of IEEE Std 519-1992), pp. 1-29. Piscataway (2014)
- Liu, Y., Jiang, S., Jin, D., Peng, J.: Performance comparison of Si IGBT and SiC MOSFET power devices based LCL three-phase inverter with double closed-loop control. IET Power Electron. 12(2), 322-329 (2019) https://doi.org/10.1049/iet-pel.2018.5702
- Huang, Q., Huang, A.Q., Yu, R., Liu, P., Yu, W.: High-efficiency and high-density single-phase dual-mode cascaded buck-boost multilevel transformerless PV inverter with gan AC switches. IEEE Trans. Power Electron. 34(8), 7474-7488 (2019) https://doi.org/10.1109/tpel.2018.2878586
- Qi, Y., Fang, J., Liu, J., Tang, Y.: Coordinated control for harmonic mitigation of parallel voltage-source inverters. CES Trans. Electric. Mach. Syst. 2(3), 276-283 (2018) https://doi.org/10.30941/CESTEMS.2018.00034
- Xin, Z., Mattavelli, P., Yao, W., Yang, Y., Blaabjerg, F., Loh, P.C.: Mitigation of grid-current distortion for LCL-filtered voltage-source inverter with inverter-current feedback control. IEEE Trans. Power Electron. 33(7), 6248-6261 (2018) https://doi.org/10.1109/tpel.2017.2740946
- Ko, W., Gu, J.: Impact of shunt active harmonic filter on harmonic current distortion of voltage source inverter-fed drives. IEEE Trans. Ind. Appl. 52(4), 2816-2825 (2016) https://doi.org/10.1109/TIA.2016.2552138
- Zhong, Q.: Harmonic droop controller to reduce the voltage harmonics of inverters. IEEE Trans. Ind. Electron. 60(3), 936-945 (2013) https://doi.org/10.1109/TIE.2012.2189542
- Zeng, Z., Yang, J.-Q., Chen, S.-L., Huang, J.: Fast-transient repetitive control strategy for a three-phase LCL filter-based shunt active power filter. J. Power Electron. 14(2), 392-401 (2014) https://doi.org/10.6113/JPE.2014.14.2.392
- Liu, Y., Jin, D., Jiang, S., Liang, W., Peng, J., Lai, C.: An active damping control method for the LLCL filter-based SiC MOS-FET grid-connected inverter in vehicle-to-grid application. IEEE Trans. Veh. Technol. 68(4), 3411-3423 (2019) https://doi.org/10.1109/tvt.2019.2899166
- Li, X., Fang, J., Lin, P., Tang, Y.: A common magnetic integration method for single-phase LCL filters and LLCL filters. In: 2017 IEEE Energy Conversion Congress and Exposition (ECCE), pp. 5595-5600 (2017)
- Fang, J., Li, H., Tang, Y.: A magnetic integrated LLCL filter for grid-connected voltage-source converters. IEEE Trans. Power Electron. 32(3), 1725-1730 (2017) https://doi.org/10.1109/TPEL.2016.2613578
- Li, X., Lin, P., Tang, Y.: Magnetic integration of LTL filter with twoLC-traps for grid-connected power converters. IEEE J. Emerg. Sel. Top. Power Electron. 6(3), 1434-1446 (2018) https://doi.org/10.1109/jestpe.2017.2764060
- Liu, Y., See, K., Yin, S., Simanjorang, R., Tong, C.F., Nawawi, A., Lai, J.J.: LCL filter design of a 50-kW 60-kHz SiC inverter with size and thermal considerations for aerospace applications. IEEE Trans. Ind. Electron. 64(10), 8321-8333 (2017) https://doi.org/10.1109/TIE.2017.2677338
- Liu, Y., See, K.Y., Tseng, K.J., Simanjorang, R., Lai, J.: Magnetic integration of three-phase LCL filter with delta-yoke composite core. IEEE Trans. Power Electron. 32(5), 3835-3843 (2017) https://doi.org/10.1109/TPEL.2016.2583489
- Wu, W., He, Y., Blaabjerg, F.: An LLCL power filter for single-phase grid-tied inverter. IEEE Trans. Power Electron. 27(2), 782-789 (2012) https://doi.org/10.1109/TPEL.2011.2161337
- Grahame, H.D.: Pulse width modulation for power converters : Principles and practice. Wiley Sons 45(1), 71-77 (2003)
- Nanjing New Conda Magnetic Industrial Co. LTD [EB/OL] (2021). http://www.ncd.com.cn/companyfle/10/. Accessed 26 Oct 2021
- Jiang, S., Liu, Y.: EMI Noise reduction for the single-phase gridconnected inverter with a modified harmonic filter design. IEEE Trans. Electromagn. Compat. 63(3), 739-751 (2021) https://doi.org/10.1109/TEMC.2020.3039243