References
- Akagi, H.: Active harmonic filters. Proc. IEEE 93(12), 2128-2141 (2005) https://doi.org/10.1109/JPROC.2005.859603
- Singh, B., Al-Haddad, K., Chandra, A.: A review of active filters for power quality improvement. IEEE Trans. Industr. Electron. 46(5), 960-971 (1999)
- Akagi, H.: New trends in active filters for power conditioning. IEEE Trans. Industr. Appl. 32(6), 1312-1322 (1996) https://doi.org/10.1109/28.556633
- Corasaniti, V., Barbieri, M., Arnera, P., Valla, M.: Hybrid active filter for reactive and harmonics compensation in a distribution network. IEEE Trans. Industr. Electron. 56(3), 670-677 (2009) https://doi.org/10.1109/TIE.2008.2007997
- Asiminoael, L., Blaabjerg, F., Hansen, S.: Detection is key-harmonic detection methods for active power filter applications. IEEE Ind. Appl. Mag. 13(4), 22-33 (2007) https://doi.org/10.1109/MIA.2007.4283506
- Chang, G.W., Tai-Chang, S.: A comparative study of active power filter reference compensation approaches. Proc. PES'02 2, 1017-1021 (2002)
- Rechka, S., Ngandui, T., Jianhong, X., Sicard, P.: A comparative study of harmonic detection algorithms for active filters and hybrid active filters. Proc. PESC'02 1, 357-363 (2002)
- Golestan, S., Guerrero, J.M., Vasquez, J.C., Abusorrah, A.M., Al-Turki, Y.: Harmonic linearization and investigation of three-phase parallel-structured signal decomposition algorithms in grid-connected applications. IEEE Trans. Power Electron. 36(4), 4198-4213 (2021) https://doi.org/10.1109/TPEL.2020.3021723
- Wang, Y.F., Li, Y.W.: Three-phase cascaded delayed signal cancellation PLL for fast selective harmonic detection. IEEE Trans. Industr. Electron. 60(4), 1452-1463 (2013) https://doi.org/10.1109/TIE.2011.2162715
- Wang, Y.F., Li, Y.W.: A grid fundamental and harmonic components detection method for single-phase systems. In: IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, pp. 4738-4745 (2012)
- Abdelsalam, A.A., Abdelaziz, A.Y., Kamh, M.Z.: A generalized approach for power quality disturbances recognition based on Kalman filter. IEEE Access 9, 93614-93628 (2021) https://doi.org/10.1109/ACCESS.2021.3093367
- Peretti, L., et al.: Robust harmonic detection, classification and compensation method for electric drives based on the sparse FFT and the Mahalanobis distance. IET Electr. Power Appl. 11(7), 1177-1186 (2017) https://doi.org/10.1049/iet-epa.2016.0843
- Jana, S.K., Srinivas, S.: A computationally efficient harmonic extraction algorithm for grid applications. IEEE Trans. Power Delivery. (2021). https://doi.org/10.1109/TPWRD.2021.3054554
- Freijedo, F.D., Doval-Gandoy, J., Lopez, O., Acha, E.: A generic open-loop algorithm for three-phase grid voltage/current synchronization with particular reference to phase, frequency, and amplitude estimation. IEEE Trans. Power Electron. 24(1), 94-107 (2009) https://doi.org/10.1109/TPEL.2008.2005580
- Freijedo, F.D., Doval-Gandoy, J., Lopez, O., Fernandez-Comesana, P., Martinez-Penalver, C.: A signal-processing adaptive algorithm for selective current harmonic cancellation in active power filters. IEEE Trans. Industr. Electron. 56(8), 2829-2840 (2009) https://doi.org/10.1109/TIE.2009.2013844
- Xie, C., Li, K., Zou, J., Zhou, K., Guerrero, J.M.: Multiple second-order generalized integrators based comb filter for fast selective harmonic extraction. In: IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, pp. 2427-2432 (2019)
- Neves, F.A.S., de Souza, H.E.P., Cavalcanti, M.C., Bradaschia, F., Bueno, E.J.: Digital filters for fast harmonic sequence component separation of unbalanced and distorted three-phase signals. IEEE Trans. Industr. Electron. 59(10), 3847-3859 (2012) https://doi.org/10.1109/TIE.2011.2163284
- Zhang, J., Wang, Z., Han, X.: Fast transient harmonic selective extraction based on modulation-CDSC-SDFT. In: 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-6 (2021)
- Gautam, S., Lu, Y., Taghizadeh, S., Xiao, W., Lu, D.D.C.: An enhanced time delay based reference current identification method for single phase system. IEEE J. Emerg. Select. Topics Industr. Electron. (2021). https://doi.org/10.1109/JESTIE.2021.3102436
- Yu, C., Huang, Y., Jiang, J.: A full-cycle and half-cycle DFT-based technique for fault current filtering. In: IEEE International Conference on Industrial Technology, Via del Mar, Chile, pp. 859-864 (2010)
- Neves, F.A.S., de Souza, H.E.P., Bradaschia, F., Cavalcanti, M.C., Rizo, M., Rodriguez, F.J.: A space-vector discrete Fourier transform for unbalanced and distorted three-phase signals. IEEE Trans. Industr. Electron. 57(8), 2858-2867 (2010) https://doi.org/10.1109/TIE.2009.2036646
- Liu, H., Hu, H., Chen, H., Zhang, L., Xing, Y.: Fast and flexible selective harmonic extraction methods based on the generalized discrete Fourier transform. IEEE Trans. Power Electron. 33(4), 3484-3496 (2018) https://doi.org/10.1109/tpel.2017.2703138
- Lehn, P.W.: Direct harmonic analysis of the voltage source converter. IEEE Trans. Power Delivery 18(3), 1034-1042 (2003) https://doi.org/10.1109/TPWRD.2003.813603
- Lv, D., Zhang, J., Dai, Y.: Study on time and frequency-domain harmonic models of single-phase full bridge rectifiers. In: IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, pp. 1186-1191 (2015)
- Testa, A., et al.: Interharmonics: theory and modeling. IEEE Trans. Power Delivery 22(4), 2335-2348 (2007) https://doi.org/10.1109/TPWRD.2007.905505
- Hou, C., Zhu, M., Li, Z., Li, Y., Cai, X.: Interharmonic THD amplification of voltage source converter: concept and case study. IEEE Trans. Power Electron. 35(12), 12651-12656 (2020) https://doi.org/10.1109/tpel.2020.2994751