References
- Murugesan, S.: An overview of electric motors for space applications. IEEE Trans Ind. Electron. Control Instrum. IECI (1981). https://doi.org/10.1109/TIECI.1981.351050
- Harbour, J.P.: Evaluation and comparison of electric propulsion motors for submarines. M.Sc. Thesis, Massachusetts Institute of Technology (MIT) (2001)
- Petkovska, L., Lefey, P., Cvetkovski, G.: Synthesis and analysis of a high-performance low-cost permanent magnet brushless DC motor. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 31(5), 1482-1491 (2012). https://doi.org/10.1108/03321641211248237
- Atanasoae, P., Pentiuc, R., Hopulele, E.: The optimal distribution of reactive power on synchronous generators in power plants. In: 8th Int. Conf. Interdisciplinary in Engineering (INTER-ENG2014), Tirgu Mures, Romania (2014). https://doi.org/10.1016/j.protcy.2015.02.090
- Chebaani, M., Golea, A., Benchouia, M.T., Golea, N.: Sensorless finite-state predictive torque control of induction motor fed by four-switch inverter using extended Kalman filter. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 37(6), 2006-2024 (2018). https://doi.org/10.1108/COMPEL-08-2017-0349
- Qi, X., Wu, L., Zhou, X., Ma, X.: Field oriented predictive control strategy for induction machine drives. Assem. Autom. 37(1), 103-113 (2017). https://doi.org/10.1108/AA-10-2016-132
- Kostko, J.K.: Polyphase reaction synchronous motors. J. Am. Inst. Electr. Eng. 42(11), 1162-1168 (1923). https://doi.org/10.1109/JoAIEE.1923.6591529
- Cai, S., Jin, M.-J., Hao, H., Shen, J.-X.: Comparative study on synchronous reluctance and PM machines. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 35(2), 607-623 (2016). https://doi.org/10.1108/COMPEL-12-2015-0447
- Guan, Y., Zhu, Z.Q., Afinowi, I.A.A., Mipo, J.C., Farah, P.: Design of synchronous reluctance and permanent magnet synchronous reluctance machines for electric vehicle application. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 35(2), 586-606 (2016). https://doi.org/10.1108/COMPEL-02-2015-0109
- Nagarajan, V.S., Mahadevan, B., Kamaraj, V., Arumugam, R., Nagarajan, G., Srivignesh, S., Suudharshana, M.: Design optimization of ferrite assisted synchronous reluctance motor using multi-objective differential evolution algorithm. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 36(1), 219-239 (2017). https://doi.org/10.1108/COMPEL-06-2016-0253
- Dia, K., Sun, X., Lei, G., Bramerdorfer, G., Guo, Y., Zhu, J.: System-level robust design optimization of a switched reluctance motor drive system considering multiple driving cycles. IEEE Trans. Energy Convers. 36(1), 348-357 (2021). https://doi.org/10.1109/TEC.2020.3009408
- Dia, K., Sun, X., Lei, G., Guo, Y., Zhu, J.: Multiobjective system level optimization method for switched reluctance motor drive systems using finite element model. IEEE Trans. Ind. Electron. 67(12), 10055-10064 (2020). https://doi.org/10.1109/TIE.2019.2962483
- Chai, W., Zhao, W., Kwon, B.-I.: Optimal design of wound field synchronous reluctance machines to improve torque by increasing the saliency ratio. IEEE Trans. Magn. (2017). https://doi.org/10.1109/TMAG.2017.2707459
- Sun, X., Shi, Zh., Lei, G., Guo, Y., Zhu, J.: Multi-objective design optimization of an IPMSM based on multilevel strategy. IEEE Trans. Ind. Electron. 68(1), 139-148 (2021). https://doi.org/10.1109/TIE.2020.2965463
- Lei, G., Bramerdorfer, G., Ma, B., Guo, Y., Zhu, J.: Robust design optimization of electrical machines: multi-objective approach. IEEE Trans. Energy Convers. 36(1), 390-401 (2021). https://doi.org/10.1109/TEC.2020.3003050
- Ghorbani, H.R., Majidi, B.: Power density optimization through optimal selection of PM properties in a PM-SyncRM using FEM analysis. In: 10th International power electronics, drive systems and technologies conference (PEDSTC2019), Shiraz, Fars, Iran (2019). https://doi.org/10.1109/PEDSTC.2019.8697258
- Guo, F., Brown, I.P.: Simultaneous magnetic and structural topology optimization of synchronous reluctance machine rotors. IEEE Trans. Magn. (2020). https://doi.org/10.1109/TMAG.2020.3014289
- Yamashita, Y., Okamoto, Y.: Design optimization of synchronous reluctance motor for reducing iron loss and improving torque characteristics using topology optimization based on the level-set method. IEEE Trans. Magn. (2020). https://doi.org/10.1109/TMAG.2019.2954468
- Michalski, T., Acosta-Cambranis, F., Romeral, L., Zaragoza, J.: Multiphase PMSM and PMaSynRM fux map model with space harmonics and multiple plane cross harmonic saturation. In: 45th Annual conference of the IEEE industrial electronics society (IECON2019), Lisbon, Portugal, Portugal (2019). https://doi.org/10.1109/IECON.2019.8927421
- Sawada, H., Suzuki, R., Okamoto, Y., Wakao, Sh.: Optimization of rotor structure for synchronous reluctance motor using coupled topology optimization based on electromagnetic field analysis and structural mechanics. In: 19th International symposium on electromagnetic fields in mechatronics, electrical and electronic engineering (ISEF2019), Nancy, France (2019). https://doi.org/10.1109/ISEF45929.2019.9097069
- Babetto, C., Bacco, G., Bianchi, N.: Synchronous reluctance machine optimization for high-speed applications. IEEE Trans. Energy Convers. 33(3), 1266-1273 (2018). https://doi.org/10.1109/TEC.2018.2800536
- Babetto, C., Bianchi, N., Lopez, C., Garcia, A., Romeral, L.: Highspeed synchronous reluctance motors: computation of the power limits by means of reluctance networks. In: 18th International power electronics and motion control conference (PEMC2018), Budapest, Hungary (2018). https://doi.org/10.1109/EPEPEMC.2018.8521968
- Lopez-Torres, C., Garcia, A., Riba, J.-R., Lux, G., Romeral, L.: Computationally efficient design and optimization approach of PMa-SynRM in Frequent operating torque-speed range. IEEE Trans. Energy Convers. 33(4), 1776-1786 (2018). https://doi.org/10.1109/TEC.2018.2831249
- Okamoto, Y., Hoshino, R., Wakao, Sh., Tsuburaya, T.: Improvement of torque characteristics for a synchronous reluctance motor using MMA-based topology optimization method. IEEE Trans. Magn. (2018). https://doi.org/10.1109/TMAG.2017.2762000
- Nardo, M.D., Calzo, G.L., Galea, M., Gerada, Ch.: Design optimization of a high-speed synchronous reluctance machine. IEEE Trans. Ind. Appl. 54(1), 233-243 (2018). https://doi.org/10.1109/TIA.2017.2758759
- Vagati, A., Boazzo, B., Guglielmi, P., Pellegrino, G.: Ferrite assisted synchronous reluctance machines: a general approach. In: XXth International conference on electrical machines (ICEM2012), Marseille, France (2012). https://doi.org/10.1109/ICElMach.2012.6350047
- Lopez-Torres, C., Espinosa, A.G., Riba, J.-R., Romeral, L.: Design and optimization for vehicle driving cycle of rare-earth-free SynRM based on coupled lumped thermal and magnetic networks. IEEE Trans. Veh. Technol. 67(1), 196-205 (2018). https://doi.org/10.1109/TVT.2017.2739020
- Bonthu, S.S.R., Choi, S., Baek, J.: Comparisons of three-phase and five-phase permanent magnet assisted synchronous reluctance motors. IET Electr. Power Appl. 10(5), 347-355 (2016). https://doi.org/10.1049/iet-epa.2015.0268
- Toliyat, H.A., Waikar, S.P., Lipo, T.A.: Analysis and simulation of five-phase synchronous reluctance machines including third harmonic of air gap MMF. IEEE Trans. Ind. Appl. 34(2), 332-339 (1998). https://doi.org/10.1109/28.663476
- Toliyat, H.A., Xu, L., Lipo, T.A.: A five phase reluctance motor, with high specific torque. In: Conference record of the IEEE industry applications society annual meeting, Seattle, WA, USA (1990). https://doi.org/10.1109/IAS.1990.152188
- Mohammad, M.T., Fletcher, J.E.: Five-phase permanent magnet machines, advantages and applications. In: 5th IET int. conf. power electronics, machines and drives (PEMD2010), Brighton, UK (2010). https://doi.org/10.1049/cp.2010.0092
- Parsa, L., Toliyat, H.A.: Fault-tolerant interior-permanent-magnet machines for hybrid electric vehicle applications. IEEE Trans. Veh. Technol. 56(4), 1546-1552 (2007). https://doi.org/10.1109/TVT.2007.896978
- Baek, J., Bonthu, S.S.R., Choi, S.: Design of five-phase permanent magnet assisted synchronous reluctance motor for low output torque ripple applications. IET Electr. Power Appl. 10(5), 339-346 (2016). https://doi.org/10.1049/iet-epa.2015.0267
- Bilyi, V., Bilyi, D., Moros, O., Dajaku, G., Gerling, D.: Synchronous reluctance machine with multiphase stator cage winding. In: 20th International conference on electrical machines and systems (ICEMS2017), Sydney, NSW, Australia (2017). https://doi.org/10.1109/ICEMS.2017.8056518