References
- Liu, K., Kang, L., Qiao, P., Cheng, Z.: A brief review on key technologies in the battery management system of electric vehicles. Front. Mech. Eng. 14, 47-64 (2019) https://doi.org/10.1007/s11465-018-0516-8
- Martinez, C.M., Hu, X., Cao, D., Velenis, E., Gao, B., Wellers, M.: Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Trans. Veh. Technol. 66(6), 4534-4549 (2017) https://doi.org/10.1109/TVT.2016.2582721
- Wang, S.L., Carlos, F., Zou, C.Y., Yu, C.M., Li, X.X., Pei, S.J., Wei, X.: Open circuit voltage and state of charge relationship functional optimization for the working state monitoring of the aerial lithium-ion battery pack. J. Sci. Prod. 198, 1090e1104 (2018)
- Long, H.Y., Zhu, C.Y., Huang, B.B., Piao, C.H., Sun, Y.Q.: Model parameters online identification and SOC joint estimation for lithium-ion battery based on a composite algorithm. J Electr Eng Technol 14(4), 1485-1493 (2019) https://doi.org/10.1007/s42835-019-00179-w
- Xiong, R., Yu, Q.Q., Wang, L.Y., Lin, C.: A novel method to obtain the open circuit voltage for the state of charge of lithiumion batteries in electric vehicles by using H infinity filter. Appl. Energy 207, 346-353 (2017) https://doi.org/10.1016/j.apenergy.2017.05.136
- Dai, H.F., Xu, T., Zhu, L.T., Wei, X.Z., Sun, Z.C.: Adaptive model parameter identification for large capacity Li-ion batteries on separated time scales. Appl. Energy 184, 119-131 (2016) https://doi.org/10.1016/j.apenergy.2016.10.020
- Lai, X., Zheng, Y., Sun, T.: A comparative study of different circuit models for estimating state-of-charge of lithium-ion batteries. Electrochim. Acta 259, 566-577 (2017) https://doi.org/10.1016/j.electacta.2017.10.153
- Wei, Z., Zhao, J., Rui, X., et al.: Online estimation of power capacity with noise effect attenuation for lithium-ion battery. IEEE Trans. Ind. Electron. 66(7), 5724e35 (2018) https://doi.org/10.1109/tie.2018.2878122
- Bian, X., Wei, Z., He, J., et al.: A two-step parameter optimization method for low-order model-based state of charge estimation. IEEE Trans. Transp. Electrifcation 7(2), 399-409 (2020) https://doi.org/10.1109/TTE.2020.3032737
- Mu, H., Xiong, R., Zheng, H.F., Chang, Y.H., Chen, Z.Y.: A novel fractional order based state-of-charge estimation method for lithium-ion battery. Appl. Energy. 207, 384-393 (2017) https://doi.org/10.1016/j.apenergy.2017.07.003
- Eseye, A.T., Zheng, D., Zhang, J., Wei. D.: Optimal energy management strategy for an isolated industrial microgrid using a modifed particle swarm optimization. In: 2016 IEEE International Conference on Power and Renewable Energy (ICPRE), p. 494e8 (2016)
- Mawonou, K., Eddahech, A., Dumur, D., et al.: Improved state of charge estimation for Li-ion batteries using fractional order extended Kalman filter. J. Power Sources 435(SEP.30), 226710 (2019) https://doi.org/10.1016/j.jpowsour.2019.226710
- Wei, Z., Zhao, D., He, H., et al.: A noise-tolerant model parameterization method for lithium-ion battery management system. Appl. Energy 268, 114932 (2020) https://doi.org/10.1016/j.apenergy.2020.114932
- Xiong, R., He, H., Sun, F., et al.: Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach. IEEE Trans. Veh. Technol. 62(1), 108-117 (2013) https://doi.org/10.1109/TVT.2012.2222684
- Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB based HEV battery packs: Part 1. Background. J. Power Sources 134(2), 252e61 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.031
- Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2: modeling and identification. J. Power Sources 134(2), 262-276 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.032
- Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3: state and parameter estimation. J. Power Sources 134(2), 277-292 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.033
- Plett, G.L.: Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs. Part 2: simultaneous state and parameter estimation. J. Power Sources 161, 1369-1384 (2006) https://doi.org/10.1016/j.jpowsour.2006.06.004
- Fleischer, C., Wag, W., Heyn, H.M., Sauer, D.U.: On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models: Part 2. Parameter and state estimation. J. Power Sources 260, 27691 (2014)
- Xiao, R., Shen, J.W., Li, X.Y., Yan, W.S.: Comparisons of modeling and state of charge estimation for lithium-ion battery based on fractional order and integral order methods. Energies 9, 184 (2016) https://doi.org/10.3390/en9030184
- Ding, F., Wang, X.H., Mao, L., Xu, L.: Joint state and multi-innovation parameter estimation for time-delay linear systems and its convergence based on the Kalman filtering. Digit. Signal Process. 62, 211-223 (2017) https://doi.org/10.1016/j.dsp.2016.11.010
- Papic, V.D., Djurovic, Z.M., Kovacevic, B.D.: Adaptive Doppler-Kalman filter for radar systems. IEEE Proc. Vis. Image Signal Process. 153(3), 379-387 (2006) https://doi.org/10.1049/ip-vis:20045268
- Zheng, L., Dang, X.J., Jing, J.B.: A novel open circuit voltage based state of charge estimation for lithium-ion battery by multi-innovation Kalman filter. IEEE Access. 7, 494432e47 (2019)