DOI QR코드

DOI QR Code

Recent Progress in Immunotherapy for Metastatic Colorectal Cancer

전이성 대장암에 대한 면역치료의 최신 지견

  • Seong Jung Kim (Department of Internal Medicine, College of Medicine, Chosun University) ;
  • Jun Lee (Department of Internal Medicine, College of Medicine, Chosun University)
  • 김성중 (조선대학교 의과대학 내과학교실) ;
  • 이준 (조선대학교 의과대학 내과학교실)
  • Received : 2022.11.01
  • Accepted : 2022.11.09
  • Published : 2022.12.01

Abstract

A breakthrough in immunotherapy has changed the outlook for metastatic colorectal cancer (mCRC) treatment as the immune surveillance evasion mechanism of tumor cells has been continuously elucidated. Immune checkpoint inhibitors (ICI), such as pembrolizumab, nivolumab, and ipilimumab, which block immune checkpoint receptors or ligands have been approved for the treatment of mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC based on numerous clinical studies. However, 50% of dMMR/MSI-H mCRC and most mismatch repair proficient/microsatellite stable mCRC remained unresponsive to current immunotherapy. Clinical trials on combination therapy that adds various treatments, such as target agents, chemotherapy, or radiation therapy to ICI, have been actively conducted to overcome this immunotherapy limitation. Further studies on safety and efficacy are needed although several trials presented promising data. Additionally, dMMR/MSI-H, tumor mutation burden, and programmed cell death ligand-1 expression have been studied as biomarkers for predicting the treatment response to immunotherapy, but the discovery and validation of more sensitively predictable biomarkers remained necessary. Thus, this study aimed to review recent studies on immunotherapy in mCRC, summarize the efficacy and limitation of immunotherapy, and describe the biomarkers that predict treatment response.

Keywords

References

  1. Hong S, Won YJ, Lee JJ, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2018. Cancer Res Treat 2021;53:301-315. https://doi.org/10.4143/crt.2021.291
  2. Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin 2017;67:177-193. https://doi.org/10.3322/caac.21395
  3. Heinemann V, von Weikersthal LF, Decker T, et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014;15:1065-1075. https://doi.org/10.1016/S1470-2045(14)70330-4
  4. Van Cutsem E, Kohne CH, Lang I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 2011;29:2011-2019. https://doi.org/10.1200/JCO.2010.33.5091
  5. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 2018;8:1069-1086. https://doi.org/10.1158/2159-8290.CD-18-0367
  6. Sinicrope FA, Sargent DJ. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clin Cancer Res 2012;18:1506-1512. https://doi.org/10.1158/1078-0432.CCR-11-1469
  7. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012;487:330-337. https://doi.org/10.1038/nature11252
  8. Toh JWT, de Souza P, Lim SH, et al. The potential value of immunotherapy in colorectal cancers: review of the evidence for programmed death-1 inhibitor therapy. Clin Colorectal Cancer 2016;15:285-291. https://doi.org/10.1016/j.clcc.2016.07.007
  9. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015;372:2509-2520. https://doi.org/10.1056/NEJMoa1500596
  10. Le DT, Kavan P, Kim TW, et al. KEYNOTE-164. Pembrolizumab for patients with advanced microsatellite instability high (MSI-H) colorectal cancer. J Clin Oncol 2018;36(15 Suppl):3514. https://doi.org/10.1200/JCO.2018.36.15_suppl.3514
  11. Le DT, Kim TW, Van Cutsem E, et al. Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 2020;38:11-19. https://doi.org/10.1200/JCO.19.02107
  12. Andre T, Shiu KK, Kim TW, et al. Pembrolizumab versus chemotherapy for microsatellite instability-high/mismatch repair deficient metastatic colorectal cancer: the phase 3 KEYNOTE-177 Study. J Clin Oncol 2020;38(18 Suppl):LBA4. https://doi.org/10.1200/JCO.2020.38.18_suppl.LBA4
  13. Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017;18:1182-1191. Erratum in: Lancet Oncol 2017;18:e510. https://doi.org/10.1016/S1470-2045(17)30422-9
  14. Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 2018;36:773-779. https://doi.org/10.1200/JCO.2017.76.9901
  15. Lenz HJ, Van Cutsem E, Luisa Limon M, et al. First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II checkMate 142 study. J Clin Oncol 2022;40:161-170. https://doi.org/10.1200/JCO.21.01015
  16. Ali SM, Gay LM, Elvin JA, et al. MSI-high and MSI-stable colorectal carcinomas (CRC): a comprehensive genomic profiling (CGP) study. J Clin Oncol 2018;36(15 Suppl):3574. https://doi.org/10.1200/JCO.2018.36.15_suppl.3574
  17. Akbay EA, Koyama S, Carretero J, et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov 2013;3:1355-1363. https://doi.org/10.1158/2159-8290.CD-13-0310
  18. Yang H, Lee WS, Kong SJ, et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J Clin Invest 2019;129:4350-4364. https://doi.org/10.1172/JCI125413
  19. Pozzi C, Cuomo A, Spadoni I, et al. The EGFR-specific antibody cetuximab combined with chemotherapy triggers immunogenic cell death. Nat Med 2016;22:624-631. https://doi.org/10.1038/nm.4078
  20. Fukuoka S, Hara H, Takahashi N, et al. Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and doseexpansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol 2020;38:2053-2061. https://doi.org/10.1200/JCO.19.03296
  21. Cousin S, Cantarel C, Guegan JP, et al. Regorafenib-avelumab combination in patients with microsatellite stable colorectal cancer (REGOMUNE): a single-arm, open-label, phase II trial. Clin Cancer Res 2021;27:2139-2147. https://doi.org/10.1158/1078-0432.CCR-20-3416
  22. Bendell JC, Bang YJ, Chee CE, et al. A phase Ib study of safety and clinical activity of atezolizumab (A) and cobimetinib (C) in patients (pts) with metastatic colorectal cancer (mCRC). J Clin Oncol 2018;36(15 Suppl):560. https://doi.org/10.1200/JCO.2018.36.4_suppl.560
  23. Eng C, Kim TW, Bendell J, et al. Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 2019;20:849-861. Erratum in: Lancet Oncol 2019;20:e293. https://doi.org/10.1016/S1470-2045(19)30027-0
  24. Pfirschke C, Engblom C, Rickelt S, et al. Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy. Immunity 2016;44:343-354. https://doi.org/10.1016/j.immuni.2015.11.024
  25. Herting CJ, Farren MR, Tong Y, et al. A multi-center, single-arm, phase Ib study of pembrolizumab (MK-3475) in combination with chemotherapy for patients with advanced colorectal cancer: HCRN GI14-186. Cancer Immunol Immunother 2021;70:3337-3348. https://doi.org/10.1007/s00262-021-02986-5
  26. Ree AH, Hamre H, Kersten C, et al. Repeat sequential oxaliplatin-based chemotherapy (FLOX) and nivolumab versus FLOX alone as first-line treatment of microsatellite-stable (MSS) metastatic colorectal cancer (mCRC): initial results from the randomized METIMMOX study. J Clin Oncol 2021;39(15 Suppl):3556. https://doi.org/10.1200/JCO.2021.39.15_suppl.3556
  27. Gong X, Li X, Jiang T, et al. Combined radiotherapy and anti-PD-L1 antibody synergistically enhances antitumor effect in non-small cell lung cancer. J Thorac Oncol 2017;12:1085-1097. https://doi.org/10.1016/j.jtho.2017.04.014
  28. Sharabi AB, Nirschl CJ, Kochel CM, et al. Stereotactic radiation therapy augments antigen-specific PD-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 2015;3:345-355. https://doi.org/10.1158/2326-6066.CIR-14-0196
  29. Parikh AR, Clark JW, Wo JYL, et al. A phase II study of ipilimumab and nivolumab with radiation in microsatellite stable (MSS) metastatic colorectal adenocarcinoma (mCRC). J Clin Oncol 2019;37(15 Suppl):3514. https://doi.org/10.1200/JCO.2019.37.15_suppl.3514
  30. Parikh AR, Szabolcs A, Allen JN, et al. Radiation therapy enhances immunotherapy response in microsatellite stable colorectal and pancreatic adenocarcinoma in a phase II trial. Nat Cancer 2021;2:1124-1135. https://doi.org/10.1038/s43018-021-00269-7
  31. Thibodeau SN, French AJ, Cunningham JM, et al. Microsatellite instability in colorectal cancer: different mutator phenotypes and the principal involvement of hMLH1. Cancer Res 1998;58:1713-1718.
  32. Mathiak M, Rutten A, Mangold E, et al. Loss of DNA mismatch repair proteins in skin tumors from patients with Muir-Torre syndrome and MSH2 or MLH1 germline mutations: establishment of immunohistochemical analysis as a screening test. Am J Surg Pathol 2002;26:338-343. https://doi.org/10.1097/00000478-200203000-00007
  33. Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of cancer site- when a biomarker defines the indication. N Engl J Med 2017;377:1409-1412. https://doi.org/10.1056/NEJMp1709968
  34. McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016;351:1463-1469. https://doi.org/10.1126/science.aaf1490
  35. Schrock AB, Ouyang C, Sandhu J, et al. Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol 2019;30:1096-1103. https://doi.org/10.1093/annonc/mdz134
  36. Chen EX, Jonker DJ, Loree JM, et al. Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 study. JAMA Oncol 2020;6:831-838. https://doi.org/10.1001/jamaoncol.2020.0910
  37. Loibl S, Sinn BV, Karn T, et al. Exome analysis of oncogenic pathways and tumor mutational burden (TMB) in triple-negative breast cancer (TNBC): results of the translational biomarker program of the neoadjuvant double-blind placebo controlled GeparNuevo trial. J Clin Oncol 2019;37(15 Suppl):509. https://doi.org/10.1200/JCO.2019.37.15_suppl.509
  38. Yoon HH, Jin Z, Kour O, et al. Association of PD-L1 expression and other variables with benefit from immune checkpoint inhibition in advanced gastroesophageal cancer: systematic review and meta-analysis of 17 phase 3 randomized clinical trials. JAMA Oncol 2022;8:1456-1465. https://doi.org/10.1001/jamaoncol.2022.3707
  39. Ettinger DS, Wood DE, Aisner DL, et al. Non-small cell lung cancer, version 5.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2017;15:504-535. https://doi.org/10.6004/jnccn.2017.0050
  40. Fuchs CS, Doi T, Jang RWJ, et al. KEYNOTE-059 cohort 1. Efficacy and safety of pembrolizumab (pembro) monotherapy in patients with previously treated advanced gastric cancer. J Clin Oncol 2017;35(15 Suppl):4003. https://doi.org/10.1200/JCO.2017.35.15_suppl.4003
  41. Masarwy R, Kampel L, Horowitz G, Gutfeld O, Muhanna N. Neoadjuvant PD-1/PD-L1 inhibitors for resectable head and neck cancer: a systematic review and meta-analysis. JAMA Otolaryngol Head Neck Surg 2021;147:871-878. https://doi.org/10.1001/jamaoto.2021.2191
  42. Endo E, Okayama H, Saito K, et al. A TGFβ-dependent stromal subset underlies immune checkpoint inhibitor efficacy in DNA mismatch repair-deficient/microsatellite instability-high colorectal cancer. Mol Cancer Res 2020;18:1402-1413. https://doi.org/10.1158/1541-7786.MCR-20-0308